Loading…

Oligonucleotide inhibitors of human thrombin that bind distinct epitopes

Thrombin, a multifunctional serine protease, recognizes multiple macromolecular substrates and plays a key role in both procoagulant and anticoagulant functions. The substrate specificity of thrombin involves two electropositive surfaces, the fibrinogen-recognition and heparin-binding exosites. The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 1997-10, Vol.272 (5), p.688-698
Main Authors: Tasset, Diane M, Kubik, Mark F, Steiner, Walter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thrombin, a multifunctional serine protease, recognizes multiple macromolecular substrates and plays a key role in both procoagulant and anticoagulant functions. The substrate specificity of thrombin involves two electropositive surfaces, the fibrinogen-recognition and heparin-binding exosites. The SELEX process is a powerful combinatorial methodology for identifying high-affinity oligonucleotide ligands to any desired target. The SELEX process has been used to isolate single-stranded DNA ligands to human thrombin. Here, a 29-nucleotide single-stranded DNA ligand to human thrombin, designated 60-18[29], with a K d of approximately 0.5 nM is described. DNA 60-18[29] inhibits thrombin-catalyzed fibrin clot formation in vitro. Previously described DNA ligands bind the fibrinogen-recognition exosite, while competition and photocrosslinking experiments indicate that the DNA ligand 60-18[29] binds the heparin-binding exosite. DNA 60-18[29] is a quadruplex/duplex with a 15-nucleotide “core” sequence that has striking similarity to previously described DNA ligands to thrombin, but binds with 20 to 50-fold higher affinity. The 15-nucleotide core sequence has eight highly conserved guanine residues and forms a G-quadruplex structure. A single nucleotide within the G-quadruplex structure can direct the DNA to a distinct epitope. Additional sequence information in the duplex regions of ligand 60-18[29] contribute to greater stability and affinity of binding to thrombin. A low-resolution model for the interaction of DNA 60-18[29] to human thrombin has been proposed.
ISSN:0022-2836
1089-8638
DOI:10.1006/jmbi.1997.1275