Loading…
The chicken genome contains two functional nonallelic beta1,4-galactosyltransferase genes. Chromosomal assignment to syntenic regions tracks fate of the two gene lineages in the human genome
Two distinct but related groups of cDNA clones, CKbeta4GT-I and CKbeta4GT-II, have been isolated by screening a chicken hepatoma cDNA library with a bovine beta1,4-galactosyltransferase (beta4GT) cDNA clone. CKbeta4GT-I is predicted to encode a type II transmembrane glycoprotein of 41 kDa with one c...
Saved in:
Published in: | The Journal of biological chemistry 1997-12, Vol.272 (50), p.31389-31399 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two distinct but related groups of cDNA clones, CKbeta4GT-I and CKbeta4GT-II, have been isolated by screening a chicken hepatoma cDNA library with a bovine beta1,4-galactosyltransferase (beta4GT) cDNA clone. CKbeta4GT-I is predicted to encode a type II transmembrane glycoprotein of 41 kDa with one consensus site for N-linked glycosylation. CKbeta4GT-II is predicted to encode a type II transmembrane glycoprotein of 43 kDa with five potential N-linked glycosylation sites. At the amino acid level, the coding regions of CKbeta4GT-I and CKbeta4GT-II are 52% identical to each other and 62 and 49% identical, respectively, to bovine beta4GT. Despite this divergence in amino acid sequence, high levels of expression of each cDNA in Trichoplusia ni insect cells demonstrate that both CKbeta4GT-I and CKbeta4GT-II encode an alpha-lactalbumin-responsive, UDP-galactose:N-acetylglucosamine beta4-galactosyltransferase. An analysis of CKbeta4GT-I and CKbeta4GT-II genomic clones established that the intron positions within the coding region are conserved when compared with each other, and these positions are identical to the mouse and human beta4GT genes. Thus CKbeta4GT-I and CKbeta4GT-II are the result of the duplication of an ancestral gene and subsequent divergence. CKbeta4GT-I maps to chicken chromosome Z in a region of conserved synteny with the centromeric region of mouse chromosome 4 and human chromosome 9p, where beta4-galactosyltransferase (EC 2.4.1.38) had previously been mapped. Consequently, during the evolution of mammals, it is the CKbeta4GT-I gene lineage that has been recruited for the biosynthesis of lactose. CKbeta4GT-II maps to a region of chicken chromosome 8 that exhibits conserved synteny with human chromosome 1p. An inspection of the current human gene map of expressed sequence tags reveals that there is a gene noted to be highly similar to beta4GT located in this syntenic region on human chromosome 1p. Because both the CKbeta4GT-I and CKbeta4GT-II gene lineages are detectable in mammals, duplication of the ancestral beta4-galactosyltransferase gene occurred over 250 million years ago in an ancestral species common to both mammals and birds. |
---|---|
ISSN: | 0021-9258 |