Loading…

Active electronic cochlear implants for middle and inner ear hearing loss--a new era in ear surgery. I: Basic principles and recommendations on nomenclature

Hearing aids have fundamental disadvantages: (1) stigmatization of the patient; (2) the sound is often found to be unsatisfactory due to the limited frequency range and undesired distortion; (3) in many patients, the ear canal fitting device generally necessary leads to an occlusion effect; (4) acou...

Full description

Saved in:
Bibliographic Details
Published in:HNO 1997-10, Vol.45 (10), p.749-757
Main Authors: Zenner, H P, Leysieffer, H
Format: Article
Language:ger
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hearing aids have fundamental disadvantages: (1) stigmatization of the patient; (2) the sound is often found to be unsatisfactory due to the limited frequency range and undesired distortion; (3) in many patients, the ear canal fitting device generally necessary leads to an occlusion effect; (4) acoustic feedback when amplification is high. Conventional hearing aids transmit sound into the ear canal via a small microphone. Sound has the disadvantage of requiring high output sound pressure levels for its transmission. This along with the necessary miniaturization of the loudspeaker as well as the resonances and reflections in the closed ear canal contribute to the disadvantages mentioned. In contrast, implantable hearing aids do not make sound signals but micromechanical vibrations. An implantable hearing aid has an electromechanical transducer instead of the loudspeaker of a conventional hearing aid. The hearing signal does not leave the transducer as sound but as a mechanical vibration which is directly coupled to the auditory system bypassing the air. This implantable hearing aid is either coupled to the tympanic membrane, the ossicular chain, the perilymph of the inner ear, or the skull. An implantable hearing aid is expected to have: 1 Better sound fidelity than a hearing aid 2 No ear canal fitting device, free ear canal 3 No feedback 4 Invisibility Requirements on electronic hearing implants designed for patients with conductive hearing loss differ from those on implants for sensorineural hearing loss. Conductive hearing loss requires the implant to replace the impedance transformation, thus being an impedance transformation implant (ITI). In various respects, the demands on an ITI are lower than the demands on an electronic hearing aid for patients with sensorineural hearing loss. The latter are mostly patients with a failure of the cochlea amplifier (CA). A damage to the CA is clinically discernible by a positive recruitment and loss of otoacoustic emissions (OAE). Since these patients form the majority of cases with sensorineural hearing loss, an active hearing implant for such patients should partially replace the function of the CA. Therefore, the suggestion is to refer to a CAI (cochlea amplifier implant). The implant expressions ITI (for patients with conductive hearing loss) and CAI (for patients with sensorineural hearing loss) used in this context allow nomenclatural association with the CI (cochlear implant) for complete inner ear failure as
ISSN:0017-6192