Loading…

question of long-range allosteric transitions in DNA

The question of long-range allosteric transitions of DNA secondary structure and their possible involvement in transcriptional activation is discussed in the light of new results. A variety of recent evidence strongly supports a fluctuating long-range description of DNA secondary structure. Balanced...

Full description

Saved in:
Bibliographic Details
Published in:BIOPOLYM 1997, Vol.44 (3), p.283-308
Main Authors: Schurr, J.M, Delrow, J.J, Fujimoto, B.S, Benight, A.S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The question of long-range allosteric transitions of DNA secondary structure and their possible involvement in transcriptional activation is discussed in the light of new results. A variety of recent evidence strongly supports a fluctuating long-range description of DNA secondary structure. Balanced equilibria between two or more different secondary structures, and the occurrence of very large domain sizes, have been documented in several instances. Long-range allosteric effects stemming from changes in sequence or secondary structure over a small region of the DNA have been observed to extend over distances up to hundreds of base pairs in some cases. The discovery that coherent bending strain beyond a threshold level in small [N less than or equal to 250 base pairs (bp)] circular DNAs significantly alters the DNA secondary structure has important implications, especially for transcriptional activators that either bend the DNA directly or are involved in the formation of DNA loops of sufficiently small size (N less than or equal to 250 bp). Whether the RNA polymerase is activated primarily via protein:protein contacts, as is widely believed, or instead via a bend-induced allosteric transition of the DNA in such a small loop, is now an open question. Binding of the transcriptional activator Sp1 to linear DNA induces a remarkably long-range change in its secondary structure, and catabolite activator protein binding to a supercoiled DNA behaves similarly, though possibly for different reasons. Compelling evidence for a bend-induced long-range structural transmission effect of the transcriptional activator integration host factor on RNA polymerase activity was recently reported. These results may augur a new paradigm in which allosteric transitions of duplex DNA, as well as of the proteins, are involved in the regulation of transcription.
ISSN:0006-3525
1097-0282
DOI:10.1002/(SICI)1097-0282(1997)44:3<283::AID-BIP7>3.0.CO;2-R