Loading…

The roles of specific xanthophylls in photoprotection

Xanthophyll pigments have critical structural and functional roles in the photosynthetic light-harvesting complexes of algae and vascular plants. Genetic dissection of xanthophyll metabolism in the green alga Chlamydomonas reinhardtii revealed functions for specific xanthophylls in the nonradiative...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1997-12, Vol.94 (25), p.14162-14167
Main Authors: Niyogi, K.K, Bjorkman, O, Grossman, A.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c611t-2d5b4d7bfd94524ca2b4423d01d21f4216efa05f26f414ee68a449b9c836307d3
cites cdi_FETCH-LOGICAL-c611t-2d5b4d7bfd94524ca2b4423d01d21f4216efa05f26f414ee68a449b9c836307d3
container_end_page 14167
container_issue 25
container_start_page 14162
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 94
creator Niyogi, K.K
Bjorkman, O
Grossman, A.R
description Xanthophyll pigments have critical structural and functional roles in the photosynthetic light-harvesting complexes of algae and vascular plants. Genetic dissection of xanthophyll metabolism in the green alga Chlamydomonas reinhardtii revealed functions for specific xanthophylls in the nonradiative dissipation of excess absorbed light energy, measured as nonphotochemical quenching of chlorophyll fluorescence. Mutants with a defect in either the alpha- or beta-branch of carotenoid biosynthesis exhibited less nonphotochemical quenching but were still able to tolerate high light. In contrast, a double mutant that was defective in the synthesis of lutein, loroxanthin (alpha-carotene branch), zeaxanthin, and antheraxanthin (beta-carotene branch) had almost no nonphotochemical quenching and was extremely sensitive to high light. These results strongly suggest that in addition to the xanthophyll cycle pigments (zeaxanthin and antheraxanthin), a-carotene-derived xanthophylls such as lutein, which are structural components of the subunits of the light-harvesting complexes, contribute to the dissipation of excess absorbed light energy and the protection of plants from photo-oxidative damage
doi_str_mv 10.1073/pnas.94.25.14162
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79650366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43877</jstor_id><sourcerecordid>43877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-2d5b4d7bfd94524ca2b4423d01d21f4216efa05f26f414ee68a449b9c836307d3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EKkvhjpAQEYeKS5axM7FjiQuqoCBV4kB7tpzEbrzKxsF2UPvv8XZXW-AApzm8743ezCPkJYU1BVG9nycd1xLXrF5TpJw9IisKkpYcJTwmKwAmygYZPiXPYtwAgKwbOCEnspKUCliR-mowRfCjiYW3RZxN56zrils9pcHPw904xsJNxTz45Ofgk-mS89Nz8sTqMZoXh3lKrj9_ujr_Ul5-u_h6_vGy7DilqWR93WIvWttLrBl2mrWIrOqB9oxaZJQbq6G2jFukaAxvNKJsZddUvALRV6fkw37vvLRb03dmSkGPag5uq8Od8tqpP5XJDerG_1SswRqy_exgD_7HYmJSWxc7M456Mn6JSkieKc7_C-bPchDYZPDtX-DGL2HKP1AMaFVLeQ_BHuqCjzEYewxMQe1qU7valETFanVfW7a8_v3Qo-HQU9bfHfSd86g-bFB2GcdkblNG3_wbzcSrPbGJyYcjglUjxEMSq73SN8FFdf2dSimAi5ym-gW69L3J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201359948</pqid></control><display><type>article</type><title>The roles of specific xanthophylls in photoprotection</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Niyogi, K.K ; Bjorkman, O ; Grossman, A.R</creator><creatorcontrib>Niyogi, K.K ; Bjorkman, O ; Grossman, A.R</creatorcontrib><description>Xanthophyll pigments have critical structural and functional roles in the photosynthetic light-harvesting complexes of algae and vascular plants. Genetic dissection of xanthophyll metabolism in the green alga Chlamydomonas reinhardtii revealed functions for specific xanthophylls in the nonradiative dissipation of excess absorbed light energy, measured as nonphotochemical quenching of chlorophyll fluorescence. Mutants with a defect in either the alpha- or beta-branch of carotenoid biosynthesis exhibited less nonphotochemical quenching but were still able to tolerate high light. In contrast, a double mutant that was defective in the synthesis of lutein, loroxanthin (alpha-carotene branch), zeaxanthin, and antheraxanthin (beta-carotene branch) had almost no nonphotochemical quenching and was extremely sensitive to high light. These results strongly suggest that in addition to the xanthophyll cycle pigments (zeaxanthin and antheraxanthin), a-carotene-derived xanthophylls such as lutein, which are structural components of the subunits of the light-harvesting complexes, contribute to the dissipation of excess absorbed light energy and the protection of plants from photo-oxidative damage</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.25.14162</identifier><identifier>PMID: 9391170</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Algae ; ALPHA-CAROTENE ; BETA-CAROTENE ; Biological Sciences ; Biology ; Botany ; CAROTENOIDE ; CAROTENOIDES ; CAROTENOIDS ; CHLAMYDOMONAS REINHARDTII ; CHLOROPHYLLE ; CHLOROPHYLLS ; CLOROFILAS ; FLUORESCENCE ; FLUORESCENCIA ; FOTOSINTESIS ; LIGHT ; LIGHT INTENSITY ; LUMIERE ; LUZ ; Molecules ; MUTANT ; MUTANTES ; MUTANTS ; Mutation ; OXIDACION ; OXIDATION ; OXYDATION ; Photons ; PHOTOSYNTHESE ; PHOTOSYNTHESIS ; Pigments ; Plant cells ; Plants ; Thylakoids ; VIOLAXANTHIN ; XANTHOPHYLLE ; XANTHOPHYLLS ; XANTOFILAS ; ZEAXANTHIN</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-12, Vol.94 (25), p.14162-14167</ispartof><rights>Copyright 1993-1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Dec 9, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-2d5b4d7bfd94524ca2b4423d01d21f4216efa05f26f414ee68a449b9c836307d3</citedby><cites>FETCH-LOGICAL-c611t-2d5b4d7bfd94524ca2b4423d01d21f4216efa05f26f414ee68a449b9c836307d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43877$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43877$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9391170$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niyogi, K.K</creatorcontrib><creatorcontrib>Bjorkman, O</creatorcontrib><creatorcontrib>Grossman, A.R</creatorcontrib><title>The roles of specific xanthophylls in photoprotection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Xanthophyll pigments have critical structural and functional roles in the photosynthetic light-harvesting complexes of algae and vascular plants. Genetic dissection of xanthophyll metabolism in the green alga Chlamydomonas reinhardtii revealed functions for specific xanthophylls in the nonradiative dissipation of excess absorbed light energy, measured as nonphotochemical quenching of chlorophyll fluorescence. Mutants with a defect in either the alpha- or beta-branch of carotenoid biosynthesis exhibited less nonphotochemical quenching but were still able to tolerate high light. In contrast, a double mutant that was defective in the synthesis of lutein, loroxanthin (alpha-carotene branch), zeaxanthin, and antheraxanthin (beta-carotene branch) had almost no nonphotochemical quenching and was extremely sensitive to high light. These results strongly suggest that in addition to the xanthophyll cycle pigments (zeaxanthin and antheraxanthin), a-carotene-derived xanthophylls such as lutein, which are structural components of the subunits of the light-harvesting complexes, contribute to the dissipation of excess absorbed light energy and the protection of plants from photo-oxidative damage</description><subject>Algae</subject><subject>ALPHA-CAROTENE</subject><subject>BETA-CAROTENE</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Botany</subject><subject>CAROTENOIDE</subject><subject>CAROTENOIDES</subject><subject>CAROTENOIDS</subject><subject>CHLAMYDOMONAS REINHARDTII</subject><subject>CHLOROPHYLLE</subject><subject>CHLOROPHYLLS</subject><subject>CLOROFILAS</subject><subject>FLUORESCENCE</subject><subject>FLUORESCENCIA</subject><subject>FOTOSINTESIS</subject><subject>LIGHT</subject><subject>LIGHT INTENSITY</subject><subject>LUMIERE</subject><subject>LUZ</subject><subject>Molecules</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>OXIDACION</subject><subject>OXIDATION</subject><subject>OXYDATION</subject><subject>Photons</subject><subject>PHOTOSYNTHESE</subject><subject>PHOTOSYNTHESIS</subject><subject>Pigments</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Thylakoids</subject><subject>VIOLAXANTHIN</subject><subject>XANTHOPHYLLE</subject><subject>XANTHOPHYLLS</subject><subject>XANTOFILAS</subject><subject>ZEAXANTHIN</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EKkvhjpAQEYeKS5axM7FjiQuqoCBV4kB7tpzEbrzKxsF2UPvv8XZXW-AApzm8743ezCPkJYU1BVG9nycd1xLXrF5TpJw9IisKkpYcJTwmKwAmygYZPiXPYtwAgKwbOCEnspKUCliR-mowRfCjiYW3RZxN56zrils9pcHPw904xsJNxTz45Ofgk-mS89Nz8sTqMZoXh3lKrj9_ujr_Ul5-u_h6_vGy7DilqWR93WIvWttLrBl2mrWIrOqB9oxaZJQbq6G2jFukaAxvNKJsZddUvALRV6fkw37vvLRb03dmSkGPag5uq8Od8tqpP5XJDerG_1SswRqy_exgD_7HYmJSWxc7M456Mn6JSkieKc7_C-bPchDYZPDtX-DGL2HKP1AMaFVLeQ_BHuqCjzEYewxMQe1qU7valETFanVfW7a8_v3Qo-HQU9bfHfSd86g-bFB2GcdkblNG3_wbzcSrPbGJyYcjglUjxEMSq73SN8FFdf2dSimAi5ym-gW69L3J</recordid><startdate>19971209</startdate><enddate>19971209</enddate><creator>Niyogi, K.K</creator><creator>Bjorkman, O</creator><creator>Grossman, A.R</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19971209</creationdate><title>The roles of specific xanthophylls in photoprotection</title><author>Niyogi, K.K ; Bjorkman, O ; Grossman, A.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-2d5b4d7bfd94524ca2b4423d01d21f4216efa05f26f414ee68a449b9c836307d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Algae</topic><topic>ALPHA-CAROTENE</topic><topic>BETA-CAROTENE</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Botany</topic><topic>CAROTENOIDE</topic><topic>CAROTENOIDES</topic><topic>CAROTENOIDS</topic><topic>CHLAMYDOMONAS REINHARDTII</topic><topic>CHLOROPHYLLE</topic><topic>CHLOROPHYLLS</topic><topic>CLOROFILAS</topic><topic>FLUORESCENCE</topic><topic>FLUORESCENCIA</topic><topic>FOTOSINTESIS</topic><topic>LIGHT</topic><topic>LIGHT INTENSITY</topic><topic>LUMIERE</topic><topic>LUZ</topic><topic>Molecules</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>OXIDACION</topic><topic>OXIDATION</topic><topic>OXYDATION</topic><topic>Photons</topic><topic>PHOTOSYNTHESE</topic><topic>PHOTOSYNTHESIS</topic><topic>Pigments</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Thylakoids</topic><topic>VIOLAXANTHIN</topic><topic>XANTHOPHYLLE</topic><topic>XANTHOPHYLLS</topic><topic>XANTOFILAS</topic><topic>ZEAXANTHIN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niyogi, K.K</creatorcontrib><creatorcontrib>Bjorkman, O</creatorcontrib><creatorcontrib>Grossman, A.R</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niyogi, K.K</au><au>Bjorkman, O</au><au>Grossman, A.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The roles of specific xanthophylls in photoprotection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-12-09</date><risdate>1997</risdate><volume>94</volume><issue>25</issue><spage>14162</spage><epage>14167</epage><pages>14162-14167</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Xanthophyll pigments have critical structural and functional roles in the photosynthetic light-harvesting complexes of algae and vascular plants. Genetic dissection of xanthophyll metabolism in the green alga Chlamydomonas reinhardtii revealed functions for specific xanthophylls in the nonradiative dissipation of excess absorbed light energy, measured as nonphotochemical quenching of chlorophyll fluorescence. Mutants with a defect in either the alpha- or beta-branch of carotenoid biosynthesis exhibited less nonphotochemical quenching but were still able to tolerate high light. In contrast, a double mutant that was defective in the synthesis of lutein, loroxanthin (alpha-carotene branch), zeaxanthin, and antheraxanthin (beta-carotene branch) had almost no nonphotochemical quenching and was extremely sensitive to high light. These results strongly suggest that in addition to the xanthophyll cycle pigments (zeaxanthin and antheraxanthin), a-carotene-derived xanthophylls such as lutein, which are structural components of the subunits of the light-harvesting complexes, contribute to the dissipation of excess absorbed light energy and the protection of plants from photo-oxidative damage</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9391170</pmid><doi>10.1073/pnas.94.25.14162</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1997-12, Vol.94 (25), p.14162-14167
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_79650366
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Algae
ALPHA-CAROTENE
BETA-CAROTENE
Biological Sciences
Biology
Botany
CAROTENOIDE
CAROTENOIDES
CAROTENOIDS
CHLAMYDOMONAS REINHARDTII
CHLOROPHYLLE
CHLOROPHYLLS
CLOROFILAS
FLUORESCENCE
FLUORESCENCIA
FOTOSINTESIS
LIGHT
LIGHT INTENSITY
LUMIERE
LUZ
Molecules
MUTANT
MUTANTES
MUTANTS
Mutation
OXIDACION
OXIDATION
OXYDATION
Photons
PHOTOSYNTHESE
PHOTOSYNTHESIS
Pigments
Plant cells
Plants
Thylakoids
VIOLAXANTHIN
XANTHOPHYLLE
XANTHOPHYLLS
XANTOFILAS
ZEAXANTHIN
title The roles of specific xanthophylls in photoprotection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20roles%20of%20specific%20xanthophylls%20in%20photoprotection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Niyogi,%20K.K&rft.date=1997-12-09&rft.volume=94&rft.issue=25&rft.spage=14162&rft.epage=14167&rft.pages=14162-14167&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.25.14162&rft_dat=%3Cjstor_proqu%3E43877%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c611t-2d5b4d7bfd94524ca2b4423d01d21f4216efa05f26f414ee68a449b9c836307d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201359948&rft_id=info:pmid/9391170&rft_jstor_id=43877&rfr_iscdi=true