Loading…

Dual Effects of Anandamide on NMDA Receptor‐Mediated Responses and Neurotransmission

: Anandamide is an endogenous ligand of cannabinoid receptors that induces pharmacological responses in animals similar to those of cannabinoids such as Δ9‐tetrahydrocannabinol (THC). Typical pharmacological effects of cannabinoids include disruption of pain, memory formation, and motor coordination...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry 1998-02, Vol.70 (2), p.671-676
Main Authors: Hampson, Aidan J., Bornheim, Lester M., Scanziani, Massimo, Yost, C. Spencer, Gray, Andrew T., Hansen, Bonnie M., Leonoudakis, Dmitri J., Bickler, Philip E.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:: Anandamide is an endogenous ligand of cannabinoid receptors that induces pharmacological responses in animals similar to those of cannabinoids such as Δ9‐tetrahydrocannabinol (THC). Typical pharmacological effects of cannabinoids include disruption of pain, memory formation, and motor coordination, systems that all depend on NMDA receptor mediated neurotransmission. We investigated whether anandamide can influence NMDA receptor activity by examining NMDA‐induced calcium flux (ΔCa2+NMDA) in rat brain slices. The presence of anandamide reduced ΔCa2+NMDA and the inhibition was disrupted by cannabinoid receptor antagonist, pertussis toxin treatment, and agatoxin (a calcium channel inhibitor). Whereas these treatments prevented anandamide inhibiting ΔCa2+NMDA, they also revealed another, underlying mechanism by which anandamide influences ΔCa2+NMDA. In the presence of cannabinoid receptor antagonist, anandamide potentiated ΔCa2+NMDA in cortical, cerebellar, and hippocampal slices. Anandamide (but not THC) also augmented NMDA‐stimulated currents in Xenopus oocytes expressing cloned NMDA receptors, suggesting a capacity to directly modulate NMDA receptor activity. In a similar manner, anandamide enhanced neurotransmission across NMDA receptor‐dependent synapses in hippocampus in a manner that was not mimicked by THC and was unaffected by cannabinoid receptor antagonist. These data demonstrate that anandamide can modulate NMDA receptor activity in addition to its role as a cannabinoid receptor ligand.
ISSN:0022-3042
1471-4159
DOI:10.1046/j.1471-4159.1998.70020671.x