Loading…
Nonsynaptic Glycine Receptor Activation during Early Neocortical Development
Glycine receptors (GlyRs) contribute to fast inhibitory synaptic transmission in the brain stem and spinal cord. GlyR subunits are expressed in the developing neocortex, but a neurotransmitter system involving cortical GlyRs has yet to be demonstrated. Here, we show that GlyRs in immature neocortex...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 1998, Vol.20 (1), p.43-53 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycine receptors (GlyRs) contribute to fast inhibitory synaptic transmission in the brain stem and spinal cord. GlyR subunits are expressed in the developing neocortex, but a neurotransmitter system involving cortical GlyRs has yet to be demonstrated. Here, we show that GlyRs in immature neocortex are excitatory and activated by a nonsynaptically released endogenous ligand. Of the potential ligands for cortical GlyRs, taurine is by far the most abundant in the developing neocortex. We found that taurine is stored in immature cortical neurons and that manipulations known to elevate extracellular taurine cause GlyR activation. These data indicate that nonsynaptically released taurine activates GlyRs during neocortical development. As fetal taurine deprivation can cause cortical dysgenesis, it is possible that taurine influences neocortical development by activating GlyRs. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/S0896-6273(00)80433-X |