Loading…

Characterization of Impurities Formed by Interaction of Duloxetine HCl with Enteric Polymers Hydroxypropyl Methylcellulose Acetate Succinate and Hydroxypropyl Methylcellulose Phthalate

□ Duloxetine hydrochloride ((S)-N-methyl-3-(1-naphthalenyloxy)-2-thiophenepropanamine hydrochloride) has been found to react with polymer degradation products or residual free acids present in the enteric polymers hydroxypropyl methylcellulose acetate succinate (HPMCAS) and hydroxypropyl methylcellu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical sciences 1998-01, Vol.87 (1), p.81-85
Main Authors: Jansen, Patrick J., Oren, Peter L., Kemp, Craig A., Maple, Steven R., Baertschi, Steven W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:□ Duloxetine hydrochloride ((S)-N-methyl-3-(1-naphthalenyloxy)-2-thiophenepropanamine hydrochloride) has been found to react with polymer degradation products or residual free acids present in the enteric polymers hydroxypropyl methylcellulose acetate succinate (HPMCAS) and hydroxypropyl methylcellulose phthalate (HPMCP) in dosage formulations to form succinamide and phthalamide impurities, respectively. The rate of formation of the impurities is accelerated by heat and humidity. The structures were deduced using molecular weights obtained from LC−MS experiments and confirmed by comparison of UV spectra, HPLC retention times, and electrospray mass spectra to independently synthesized material. It is proposed that polymer-bound succinic and phthalic substituents can be cleaved from the polymer, resulting in the formation of either the free acids or the anhydrides. It is postulated that the reaction is enabled by migration of either (1) the free acid or anhydride or (2) the parent drug through the formulation. The formation of these impurities was minimized by increasing the thickness of the physical barrier separating the enteric coating from the drug.
ISSN:0022-3549
1520-6017
DOI:10.1021/js970133r