Loading…
Receptive field properties of visual neurons in the avian nucleus lentiformis mesencephali
The receptive field (RF) properties of visual neurons extracellularly recorded from the nucleus lentiformis mesencephali (nLM) in pigeons (Columba livia) were quantitatively analyzed using a workstation computer. These cells were actively spontaneous, and direction-and velocity-selective. Using spat...
Saved in:
Published in: | Experimental brain research 1998-01, Vol.118 (2), p.279-285 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c413t-706255393de5a955bc030924d8ca36d61569c7cac763ef5644c961ed51c2c1233 |
---|---|
cites | |
container_end_page | 285 |
container_issue | 2 |
container_start_page | 279 |
container_title | Experimental brain research |
container_volume | 118 |
creator | FU, Y.-X GAO, H.-F GUO, M.-W WANG, S.-R |
description | The receptive field (RF) properties of visual neurons extracellularly recorded from the nucleus lentiformis mesencephali (nLM) in pigeons (Columba livia) were quantitatively analyzed using a workstation computer. These cells were actively spontaneous, and direction-and velocity-selective. Using spatial gratings as visual stimuli, these cells could be divided into three groups: uni- (74%), bi- (17%), and omnidirectional (9%) cells in terms of their directionality. On the basis of their velocity selectivity, they could be named slow cells (84%), preferring low velocity (0.1-11 degrees/s), and fast cells (14%), preferring rapid motion (34-67 degrees/s), with one cell (2%) responding maximally to an intermediate velocity of 18 degrees/ s. These two properties were correlated in the way that all unidirectionals were slow cells, omnidirectionals were fast cells, and bidirectionals were either slow or fast cells including the intermediate cell. Using small targets as visual stimuli, it was found that the majority of cells examined had RFs that each consisted of an excitatory RF (ERF) and an inhibitory RF (IRF) that overlapped. The unidirectionals were mainly of this type of RF structure, whereas the omnidirectionals apparently had ERFs alone. The direction preference of ERF was opposite to that of IRF for unidirectional cells tested, whereas they were perpendicular to each other for one bidirectional cell. The overall responses of these cells resulted from interaction between excitation and inhibition induced by directionally different motion. Under certain conditions, visual responses of a particular cells to a small target moving through its ERF were equal in responsive strength to those to whole-field gratings swept over the screen. It was suggested that optokinetic nystagmus produced by wholefield gratings results from population activity of large group(s) of neurons in some optokinetic nuclei, at least one of which is nLM. |
doi_str_mv | 10.1007/s002210050282 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79705541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A301646531</galeid><sourcerecordid>A301646531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-706255393de5a955bc030924d8ca36d61569c7cac763ef5644c961ed51c2c1233</originalsourceid><addsrcrecordid>eNqFkcFrFTEQxoNY6rN69CjkIIKHrZNkk90cS6laKBRavXhZ0uxsXyQv-9xJHvrfm_oexZ48zQzz45uP-Rh7I-BUAHQfCUDK2mmQvXzGVqJVshECzHO2AhBt0_bCvmAviX48jKqDY3ZsdduB7Vfs-w163OawQz4FjCPfLvMWlxyQ-DzxXaDiIk9YljkRD4nnNXK3Cy7xVHzEQjxiymGal00gvkHCVAXXLoZX7GhykfD1oZ6wb58uvp5_aa6uP1-en101vhUqNx0YqbWyakTtrNZ3HhRY2Y69d8qMRmhjfeed74zCSZu29dYIHLXw0gup1Al7v9et1n8WpDxUJx5jdAnnQkNnO9C63vofKEwLohemgh_24L2LOITk55TxV753hWi4vL0ZzhRU2Gj1j-hfdo0u5jXNseRQH_YUbPagX2aiBadhu4SNW34PAoaHJIcnSVb-7cFtudvg-Egfoqv7d4e9I-_itLjkAz1iUijQwqo_d02jQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16401816</pqid></control><display><type>article</type><title>Receptive field properties of visual neurons in the avian nucleus lentiformis mesencephali</title><source>Springer Link</source><creator>FU, Y.-X ; GAO, H.-F ; GUO, M.-W ; WANG, S.-R</creator><creatorcontrib>FU, Y.-X ; GAO, H.-F ; GUO, M.-W ; WANG, S.-R</creatorcontrib><description>The receptive field (RF) properties of visual neurons extracellularly recorded from the nucleus lentiformis mesencephali (nLM) in pigeons (Columba livia) were quantitatively analyzed using a workstation computer. These cells were actively spontaneous, and direction-and velocity-selective. Using spatial gratings as visual stimuli, these cells could be divided into three groups: uni- (74%), bi- (17%), and omnidirectional (9%) cells in terms of their directionality. On the basis of their velocity selectivity, they could be named slow cells (84%), preferring low velocity (0.1-11 degrees/s), and fast cells (14%), preferring rapid motion (34-67 degrees/s), with one cell (2%) responding maximally to an intermediate velocity of 18 degrees/ s. These two properties were correlated in the way that all unidirectionals were slow cells, omnidirectionals were fast cells, and bidirectionals were either slow or fast cells including the intermediate cell. Using small targets as visual stimuli, it was found that the majority of cells examined had RFs that each consisted of an excitatory RF (ERF) and an inhibitory RF (IRF) that overlapped. The unidirectionals were mainly of this type of RF structure, whereas the omnidirectionals apparently had ERFs alone. The direction preference of ERF was opposite to that of IRF for unidirectional cells tested, whereas they were perpendicular to each other for one bidirectional cell. The overall responses of these cells resulted from interaction between excitation and inhibition induced by directionally different motion. Under certain conditions, visual responses of a particular cells to a small target moving through its ERF were equal in responsive strength to those to whole-field gratings swept over the screen. It was suggested that optokinetic nystagmus produced by wholefield gratings results from population activity of large group(s) of neurons in some optokinetic nuclei, at least one of which is nLM.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s002210050282</identifier><identifier>PMID: 9547098</identifier><identifier>CODEN: EXBRAP</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Animals ; Biological and medical sciences ; Columbidae ; Computer Graphics ; Eye and associated structures. Visual pathways and centers. Vision ; Female ; Fundamental and applied biological sciences. Psychology ; Male ; Mesencephalon - physiology ; Neurons ; Neurons - physiology ; Nystagmus, Optokinetic - physiology ; Photic Stimulation ; Pigeons ; Vertebrates: nervous system and sense organs ; Visual Fields - physiology</subject><ispartof>Experimental brain research, 1998-01, Vol.118 (2), p.279-285</ispartof><rights>1998 INIST-CNRS</rights><rights>COPYRIGHT 1998 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-706255393de5a955bc030924d8ca36d61569c7cac763ef5644c961ed51c2c1233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2130519$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9547098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FU, Y.-X</creatorcontrib><creatorcontrib>GAO, H.-F</creatorcontrib><creatorcontrib>GUO, M.-W</creatorcontrib><creatorcontrib>WANG, S.-R</creatorcontrib><title>Receptive field properties of visual neurons in the avian nucleus lentiformis mesencephali</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><description>The receptive field (RF) properties of visual neurons extracellularly recorded from the nucleus lentiformis mesencephali (nLM) in pigeons (Columba livia) were quantitatively analyzed using a workstation computer. These cells were actively spontaneous, and direction-and velocity-selective. Using spatial gratings as visual stimuli, these cells could be divided into three groups: uni- (74%), bi- (17%), and omnidirectional (9%) cells in terms of their directionality. On the basis of their velocity selectivity, they could be named slow cells (84%), preferring low velocity (0.1-11 degrees/s), and fast cells (14%), preferring rapid motion (34-67 degrees/s), with one cell (2%) responding maximally to an intermediate velocity of 18 degrees/ s. These two properties were correlated in the way that all unidirectionals were slow cells, omnidirectionals were fast cells, and bidirectionals were either slow or fast cells including the intermediate cell. Using small targets as visual stimuli, it was found that the majority of cells examined had RFs that each consisted of an excitatory RF (ERF) and an inhibitory RF (IRF) that overlapped. The unidirectionals were mainly of this type of RF structure, whereas the omnidirectionals apparently had ERFs alone. The direction preference of ERF was opposite to that of IRF for unidirectional cells tested, whereas they were perpendicular to each other for one bidirectional cell. The overall responses of these cells resulted from interaction between excitation and inhibition induced by directionally different motion. Under certain conditions, visual responses of a particular cells to a small target moving through its ERF were equal in responsive strength to those to whole-field gratings swept over the screen. It was suggested that optokinetic nystagmus produced by wholefield gratings results from population activity of large group(s) of neurons in some optokinetic nuclei, at least one of which is nLM.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Columbidae</subject><subject>Computer Graphics</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Male</subject><subject>Mesencephalon - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Nystagmus, Optokinetic - physiology</subject><subject>Photic Stimulation</subject><subject>Pigeons</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Visual Fields - physiology</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkcFrFTEQxoNY6rN69CjkIIKHrZNkk90cS6laKBRavXhZ0uxsXyQv-9xJHvrfm_oexZ48zQzz45uP-Rh7I-BUAHQfCUDK2mmQvXzGVqJVshECzHO2AhBt0_bCvmAviX48jKqDY3ZsdduB7Vfs-w163OawQz4FjCPfLvMWlxyQ-DzxXaDiIk9YljkRD4nnNXK3Cy7xVHzEQjxiymGal00gvkHCVAXXLoZX7GhykfD1oZ6wb58uvp5_aa6uP1-en101vhUqNx0YqbWyakTtrNZ3HhRY2Y69d8qMRmhjfeed74zCSZu29dYIHLXw0gup1Al7v9et1n8WpDxUJx5jdAnnQkNnO9C63vofKEwLohemgh_24L2LOITk55TxV753hWi4vL0ZzhRU2Gj1j-hfdo0u5jXNseRQH_YUbPagX2aiBadhu4SNW34PAoaHJIcnSVb-7cFtudvg-Egfoqv7d4e9I-_itLjkAz1iUijQwqo_d02jQA</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>FU, Y.-X</creator><creator>GAO, H.-F</creator><creator>GUO, M.-W</creator><creator>WANG, S.-R</creator><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>19980101</creationdate><title>Receptive field properties of visual neurons in the avian nucleus lentiformis mesencephali</title><author>FU, Y.-X ; GAO, H.-F ; GUO, M.-W ; WANG, S.-R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-706255393de5a955bc030924d8ca36d61569c7cac763ef5644c961ed51c2c1233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Columbidae</topic><topic>Computer Graphics</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Male</topic><topic>Mesencephalon - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Nystagmus, Optokinetic - physiology</topic><topic>Photic Stimulation</topic><topic>Pigeons</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Visual Fields - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FU, Y.-X</creatorcontrib><creatorcontrib>GAO, H.-F</creatorcontrib><creatorcontrib>GUO, M.-W</creatorcontrib><creatorcontrib>WANG, S.-R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FU, Y.-X</au><au>GAO, H.-F</au><au>GUO, M.-W</au><au>WANG, S.-R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Receptive field properties of visual neurons in the avian nucleus lentiformis mesencephali</atitle><jtitle>Experimental brain research</jtitle><addtitle>Exp Brain Res</addtitle><date>1998-01-01</date><risdate>1998</risdate><volume>118</volume><issue>2</issue><spage>279</spage><epage>285</epage><pages>279-285</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><coden>EXBRAP</coden><abstract>The receptive field (RF) properties of visual neurons extracellularly recorded from the nucleus lentiformis mesencephali (nLM) in pigeons (Columba livia) were quantitatively analyzed using a workstation computer. These cells were actively spontaneous, and direction-and velocity-selective. Using spatial gratings as visual stimuli, these cells could be divided into three groups: uni- (74%), bi- (17%), and omnidirectional (9%) cells in terms of their directionality. On the basis of their velocity selectivity, they could be named slow cells (84%), preferring low velocity (0.1-11 degrees/s), and fast cells (14%), preferring rapid motion (34-67 degrees/s), with one cell (2%) responding maximally to an intermediate velocity of 18 degrees/ s. These two properties were correlated in the way that all unidirectionals were slow cells, omnidirectionals were fast cells, and bidirectionals were either slow or fast cells including the intermediate cell. Using small targets as visual stimuli, it was found that the majority of cells examined had RFs that each consisted of an excitatory RF (ERF) and an inhibitory RF (IRF) that overlapped. The unidirectionals were mainly of this type of RF structure, whereas the omnidirectionals apparently had ERFs alone. The direction preference of ERF was opposite to that of IRF for unidirectional cells tested, whereas they were perpendicular to each other for one bidirectional cell. The overall responses of these cells resulted from interaction between excitation and inhibition induced by directionally different motion. Under certain conditions, visual responses of a particular cells to a small target moving through its ERF were equal in responsive strength to those to whole-field gratings swept over the screen. It was suggested that optokinetic nystagmus produced by wholefield gratings results from population activity of large group(s) of neurons in some optokinetic nuclei, at least one of which is nLM.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>9547098</pmid><doi>10.1007/s002210050282</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4819 |
ispartof | Experimental brain research, 1998-01, Vol.118 (2), p.279-285 |
issn | 0014-4819 1432-1106 |
language | eng |
recordid | cdi_proquest_miscellaneous_79705541 |
source | Springer Link |
subjects | Animals Biological and medical sciences Columbidae Computer Graphics Eye and associated structures. Visual pathways and centers. Vision Female Fundamental and applied biological sciences. Psychology Male Mesencephalon - physiology Neurons Neurons - physiology Nystagmus, Optokinetic - physiology Photic Stimulation Pigeons Vertebrates: nervous system and sense organs Visual Fields - physiology |
title | Receptive field properties of visual neurons in the avian nucleus lentiformis mesencephali |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Receptive%20field%20properties%20of%20visual%20neurons%20in%20the%20avian%20nucleus%20lentiformis%20mesencephali&rft.jtitle=Experimental%20brain%20research&rft.au=FU,%20Y.-X&rft.date=1998-01-01&rft.volume=118&rft.issue=2&rft.spage=279&rft.epage=285&rft.pages=279-285&rft.issn=0014-4819&rft.eissn=1432-1106&rft.coden=EXBRAP&rft_id=info:doi/10.1007/s002210050282&rft_dat=%3Cgale_proqu%3EA301646531%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-706255393de5a955bc030924d8ca36d61569c7cac763ef5644c961ed51c2c1233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16401816&rft_id=info:pmid/9547098&rft_galeid=A301646531&rfr_iscdi=true |