Loading…

Intragenic interspecific complementation of glucose 6-phosphate dehydrogenase in human : hamster cell hybrids

A new variant of human glucose 6-phosphate dehydrogenase (G6PD), provisionally designated G6PD Harilaou, was observed in a Greek boy affected by severe hemolytic anemia. G6PD Harilaou was associated with very severe deficiency of enzyme activity, which measured about 1% of normal in the patient'...

Full description

Saved in:
Bibliographic Details
Published in:Somatic cell and molecular genetics 1990-03, Vol.16 (2), p.97-108
Main Authors: TOWN, M, ATHANASIOU-METAXA, M, LUZZATTO, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new variant of human glucose 6-phosphate dehydrogenase (G6PD), provisionally designated G6PD Harilaou, was observed in a Greek boy affected by severe hemolytic anemia. G6PD Harilaou was associated with very severe deficiency of enzyme activity, which measured about 1% of normal in the patient's fibroblasts. By fusion of Harilaou fibroblasts with a similarly enzyme-deficient mutant CHO cell line, we have isolated a hybrid cell line that has a G6PD activity 5-10 times higher than either of the parental cells. By electrophoretic analysis we show that most of this activity is associated with a hybrid dimeric G6PD molecule consisting of one hamster and one human subunit. We suggest that this heterologous quasi-interallelic complementation is effected by a catalytically abnormal hamster subunit stabilizing a catalytically abnormal and unstable Harilaou subunit. This approach may be useful for the study of dimer formation and stability in human G6PD.
ISSN:0740-7750
1572-9931
DOI:10.1007/BF01233040