Loading…

Characterization of the phosphorylation state of natriuretic peptide receptor-C

Many internalized receptors are known to be phosphorylated within their cytoplasmic domain. Natriuretic peptide receptor-C (NPR-C) is a covalent homodimer primarily involved in the internalization of bound ligand resulting in tissue uptake and degradation of natriuretic peptides. In this report, we...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular biochemistry 1998-01, Vol.178 (1-2), p.95-101
Main Authors: Pedro, L, Fenrick, R, Marquis, M, McNicoll, N, De Léan, A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many internalized receptors are known to be phosphorylated within their cytoplasmic domain. Natriuretic peptide receptor-C (NPR-C) is a covalent homodimer primarily involved in the internalization of bound ligand resulting in tissue uptake and degradation of natriuretic peptides. In this report, we have investigated the phosphorylation state of NPR-C receptors present at high level in rat aortic smooth muscle cells (RASM). 32P labeled cells, NPR-C purification and phosphoamino acid analysis clearly demonstrate that NPR-C exists as a phosphoprotein in RASM cells and that phosphorylation occurs exclusively on serine residues. Transient expression of bovine NPR-C in Cos-P cells of kidney origin confirmed that phosphorylation occurs within the cytoplasmic domain of the receptor. These results provide the first evidence for NPR-C phosphorylation as well as a model for future studies of its role in altering receptor function.
ISSN:0300-8177
1573-4919
DOI:10.1023/A:1006808604321