Loading…

Suppression of bone resorption in early postmenopausal women by intranasal salmon calcitonin in relation to dosage and basal bone turnover

In the present study, we assessed the ability of increasing doses of intranasal calcitonin to suppress urinary deoxypyridinoline cross-link (DPD), a specific biochemical marker of bone resorption, in early postmenopausal women. Subjects consisted of 30 healthy Thai women within 5 years of postmenopa...

Full description

Saved in:
Bibliographic Details
Published in:Calcified tissue international 1998-05, Vol.62 (5), p.379-382
Main Authors: Ongphiphadhanakul, B, Piaseu, N, Chailurkit, L, Rajatanavin, R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the present study, we assessed the ability of increasing doses of intranasal calcitonin to suppress urinary deoxypyridinoline cross-link (DPD), a specific biochemical marker of bone resorption, in early postmenopausal women. Subjects consisted of 30 healthy Thai women within 5 years of postmenopause, randomly assigned to 50, 100, or 200 IU of intranasal calcitonin 5 days/week for 3 months. Calcium supplementation by calcium carbonate capsules at 750 mg of elemental calcium per day was given to all subjects. Twenty four-hour urine for DPD and creatinine assays was collected at baseline, 1 month, and 3 months after treatment. All DPD values were corrected with urinary creatinine before analyses. Data were expressed as mean +/- SEM. DPD decreased significantly 1 month after intranasal calcitonin treatment (P < 0.01). However, at 3 months, DPD increased when compared with the values at 1 month (P < 0.01), suggesting that there may be a reduction in the suppression of bone resorption after prolonged calcitonin therapy. Using a stepwise multiple regression model to address whether dosage and DPD at baseline influence the response to intranasal calcitonin, it was found that DPD suppression after intranasal calcitonin was not related to dosage but was strongly associated with baseline DPD (P < 0.0001). Suppression of bone resorption in early postmenopausal women by intranasal calcitonin is determined more by the state of bone turnover at baseline than the dosage of calcitonin.
ISSN:0171-967X
1432-0827
DOI:10.1007/s002239900448