Loading…
Modulation of Lipid Polymorphism by the Feline Leukemia Virus Fusion Peptide: Implications for the Fusion Mechanism
The structural effects of the fusion peptide of feline leukemia virus (FeLV) on lipid polymorphism were studied, using differential scanning calorimetry (DSC), 31P nuclear magnetic resonance (NMR), and time-resolved X-ray diffraction. This peptide lowers the bilayer to inverted hexagonal phase trans...
Saved in:
Published in: | Biochemistry (Easton) 1998-04, Vol.37 (16), p.5720-5729 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a379t-55d1443ac5b60e949aa31207734b312024674c497f429f56e1c859857c76130e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a379t-55d1443ac5b60e949aa31207734b312024674c497f429f56e1c859857c76130e3 |
container_end_page | 5729 |
container_issue | 16 |
container_start_page | 5720 |
container_title | Biochemistry (Easton) |
container_volume | 37 |
creator | Davies, Sarah M. A Epand, Raquel F Bradshaw, Jeremy P Epand, Richard M |
description | The structural effects of the fusion peptide of feline leukemia virus (FeLV) on lipid polymorphism were studied, using differential scanning calorimetry (DSC), 31P nuclear magnetic resonance (NMR), and time-resolved X-ray diffraction. This peptide lowers the bilayer to inverted hexagonal phase transition temperature, T H, of dipalmitoleoylphosphatidylethanolamine (DiPoPE) at peptide mole fractions of up to 1.5 × 10-3 at pH 5.0 and at pH 7.4. The temperature at which isotropic 31P NMR signals for monomethyldioleoylphosphatidylethanolamine (MeDOPE) first occurred is lowered by the FeLV peptide. The amount of isotropic signal seen at 40 °C is directly correlated to the peptide:lipid molar ratio. In the peptide-containing samples, more lipid remains in the isotropic state over the whole recorded temperature range. Isotropic 31P NMR signals were observed for DiPoPE in the presence of the FeLV peptide for the entire recorded temperature range of 35−50 °C, while pure DiPoPE showed no significant amount of isotropic signal. X-ray studies of DiPoPE show the formation of a new lipid phase with peptide, which is not seen in the pure lipid samples. Disordering of the Lα phase is evidenced by broadening of the diffraction peaks, and the hexagonal cell parameter is decreased with peptide present. Our results suggest that the FeLV peptide is increasing the negative curvature of the lipid system, which is thought to be crucial to the formation of highly bent, high-energy structural fusion intermediates, such as the “stalk” model. Fusion activity for this putative fusogenic peptide was also demonstrated, using a resonance energy transfer (RET) lipid mixing assay. To our knowledge, this work provides the first published experimental evidence of both fusogenic activity and effects on lipid polymorphism for the FeLV fusion peptide. |
doi_str_mv | 10.1021/bi980227v |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79809525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79809525</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-55d1443ac5b60e949aa31207734b312024674c497f429f56e1c859857c76130e3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi0EKkvhwAMg-QISh1Db8Z-YG6pYqLpVV6WAxMVynInWbRIHO6nYG9e-Zp-ELFntCYnTzOj7zTfSNwi9pOQdJYyelF4XhDF19wgtqGAk41qLx2hBCJEZ05I8Rc9SuplGThQ_Qkda8EKLYoHuLkI1NnbwocOhxivf-wqvQ7NtQ-w3PrW43OJhA3gJje8Ar2C8hdZb_M3HMeHlmHaba-gHX8H7h9_3-KztG-_-OiZchzhvz9wFuI3tJtfn6EltmwQv9vUYfV1-vD79nK0uP52dflhlNld6yISoKOe5daKUBDTX1uaUEaVyXu4axqXijmtVc6ZrIYG6QuhCKKckzQnkx-jN7NvH8HOENJjWJwdNYzsIYzJqyk0LJv4LUslprriewLcz6GJIKUJt-uhbG7eGErN7hjk8Y2Jf7U3HsoXqQO7Tn_Rs1n0a4NdBtvHWSJUrYa7XXww9v5JX3_W5-THxr2feumRuwhi7Kbt_3P0DusOf4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16413749</pqid></control><display><type>article</type><title>Modulation of Lipid Polymorphism by the Feline Leukemia Virus Fusion Peptide: Implications for the Fusion Mechanism</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Davies, Sarah M. A ; Epand, Raquel F ; Bradshaw, Jeremy P ; Epand, Richard M</creator><creatorcontrib>Davies, Sarah M. A ; Epand, Raquel F ; Bradshaw, Jeremy P ; Epand, Richard M</creatorcontrib><description>The structural effects of the fusion peptide of feline leukemia virus (FeLV) on lipid polymorphism were studied, using differential scanning calorimetry (DSC), 31P nuclear magnetic resonance (NMR), and time-resolved X-ray diffraction. This peptide lowers the bilayer to inverted hexagonal phase transition temperature, T H, of dipalmitoleoylphosphatidylethanolamine (DiPoPE) at peptide mole fractions of up to 1.5 × 10-3 at pH 5.0 and at pH 7.4. The temperature at which isotropic 31P NMR signals for monomethyldioleoylphosphatidylethanolamine (MeDOPE) first occurred is lowered by the FeLV peptide. The amount of isotropic signal seen at 40 °C is directly correlated to the peptide:lipid molar ratio. In the peptide-containing samples, more lipid remains in the isotropic state over the whole recorded temperature range. Isotropic 31P NMR signals were observed for DiPoPE in the presence of the FeLV peptide for the entire recorded temperature range of 35−50 °C, while pure DiPoPE showed no significant amount of isotropic signal. X-ray studies of DiPoPE show the formation of a new lipid phase with peptide, which is not seen in the pure lipid samples. Disordering of the Lα phase is evidenced by broadening of the diffraction peaks, and the hexagonal cell parameter is decreased with peptide present. Our results suggest that the FeLV peptide is increasing the negative curvature of the lipid system, which is thought to be crucial to the formation of highly bent, high-energy structural fusion intermediates, such as the “stalk” model. Fusion activity for this putative fusogenic peptide was also demonstrated, using a resonance energy transfer (RET) lipid mixing assay. To our knowledge, this work provides the first published experimental evidence of both fusogenic activity and effects on lipid polymorphism for the FeLV fusion peptide.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi980227v</identifier><identifier>PMID: 9548958</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Calorimetry, Differential Scanning ; Leukemia Virus, Feline - chemistry ; Leukemia Virus, Feline - physiology ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Liposomes ; Magnetic Resonance Spectroscopy ; Membrane Fusion - drug effects ; Molecular Sequence Data ; Phosphatidylethanolamines - chemistry ; Phosphorus Isotopes ; Viral Fusion Proteins - chemistry ; Viral Fusion Proteins - physiology ; X-Ray Diffraction</subject><ispartof>Biochemistry (Easton), 1998-04, Vol.37 (16), p.5720-5729</ispartof><rights>Copyright © 1998 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-55d1443ac5b60e949aa31207734b312024674c497f429f56e1c859857c76130e3</citedby><cites>FETCH-LOGICAL-a379t-55d1443ac5b60e949aa31207734b312024674c497f429f56e1c859857c76130e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9548958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davies, Sarah M. A</creatorcontrib><creatorcontrib>Epand, Raquel F</creatorcontrib><creatorcontrib>Bradshaw, Jeremy P</creatorcontrib><creatorcontrib>Epand, Richard M</creatorcontrib><title>Modulation of Lipid Polymorphism by the Feline Leukemia Virus Fusion Peptide: Implications for the Fusion Mechanism</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The structural effects of the fusion peptide of feline leukemia virus (FeLV) on lipid polymorphism were studied, using differential scanning calorimetry (DSC), 31P nuclear magnetic resonance (NMR), and time-resolved X-ray diffraction. This peptide lowers the bilayer to inverted hexagonal phase transition temperature, T H, of dipalmitoleoylphosphatidylethanolamine (DiPoPE) at peptide mole fractions of up to 1.5 × 10-3 at pH 5.0 and at pH 7.4. The temperature at which isotropic 31P NMR signals for monomethyldioleoylphosphatidylethanolamine (MeDOPE) first occurred is lowered by the FeLV peptide. The amount of isotropic signal seen at 40 °C is directly correlated to the peptide:lipid molar ratio. In the peptide-containing samples, more lipid remains in the isotropic state over the whole recorded temperature range. Isotropic 31P NMR signals were observed for DiPoPE in the presence of the FeLV peptide for the entire recorded temperature range of 35−50 °C, while pure DiPoPE showed no significant amount of isotropic signal. X-ray studies of DiPoPE show the formation of a new lipid phase with peptide, which is not seen in the pure lipid samples. Disordering of the Lα phase is evidenced by broadening of the diffraction peaks, and the hexagonal cell parameter is decreased with peptide present. Our results suggest that the FeLV peptide is increasing the negative curvature of the lipid system, which is thought to be crucial to the formation of highly bent, high-energy structural fusion intermediates, such as the “stalk” model. Fusion activity for this putative fusogenic peptide was also demonstrated, using a resonance energy transfer (RET) lipid mixing assay. To our knowledge, this work provides the first published experimental evidence of both fusogenic activity and effects on lipid polymorphism for the FeLV fusion peptide.</description><subject>Amino Acid Sequence</subject><subject>Calorimetry, Differential Scanning</subject><subject>Leukemia Virus, Feline - chemistry</subject><subject>Leukemia Virus, Feline - physiology</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Liposomes</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Membrane Fusion - drug effects</subject><subject>Molecular Sequence Data</subject><subject>Phosphatidylethanolamines - chemistry</subject><subject>Phosphorus Isotopes</subject><subject>Viral Fusion Proteins - chemistry</subject><subject>Viral Fusion Proteins - physiology</subject><subject>X-Ray Diffraction</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi0EKkvhwAMg-QISh1Db8Z-YG6pYqLpVV6WAxMVynInWbRIHO6nYG9e-Zp-ELFntCYnTzOj7zTfSNwi9pOQdJYyelF4XhDF19wgtqGAk41qLx2hBCJEZ05I8Rc9SuplGThQ_Qkda8EKLYoHuLkI1NnbwocOhxivf-wqvQ7NtQ-w3PrW43OJhA3gJje8Ar2C8hdZb_M3HMeHlmHaba-gHX8H7h9_3-KztG-_-OiZchzhvz9wFuI3tJtfn6EltmwQv9vUYfV1-vD79nK0uP52dflhlNld6yISoKOe5daKUBDTX1uaUEaVyXu4axqXijmtVc6ZrIYG6QuhCKKckzQnkx-jN7NvH8HOENJjWJwdNYzsIYzJqyk0LJv4LUslprriewLcz6GJIKUJt-uhbG7eGErN7hjk8Y2Jf7U3HsoXqQO7Tn_Rs1n0a4NdBtvHWSJUrYa7XXww9v5JX3_W5-THxr2feumRuwhi7Kbt_3P0DusOf4A</recordid><startdate>19980421</startdate><enddate>19980421</enddate><creator>Davies, Sarah M. A</creator><creator>Epand, Raquel F</creator><creator>Bradshaw, Jeremy P</creator><creator>Epand, Richard M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>19980421</creationdate><title>Modulation of Lipid Polymorphism by the Feline Leukemia Virus Fusion Peptide: Implications for the Fusion Mechanism</title><author>Davies, Sarah M. A ; Epand, Raquel F ; Bradshaw, Jeremy P ; Epand, Richard M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-55d1443ac5b60e949aa31207734b312024674c497f429f56e1c859857c76130e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Amino Acid Sequence</topic><topic>Calorimetry, Differential Scanning</topic><topic>Leukemia Virus, Feline - chemistry</topic><topic>Leukemia Virus, Feline - physiology</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Liposomes</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Membrane Fusion - drug effects</topic><topic>Molecular Sequence Data</topic><topic>Phosphatidylethanolamines - chemistry</topic><topic>Phosphorus Isotopes</topic><topic>Viral Fusion Proteins - chemistry</topic><topic>Viral Fusion Proteins - physiology</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davies, Sarah M. A</creatorcontrib><creatorcontrib>Epand, Raquel F</creatorcontrib><creatorcontrib>Bradshaw, Jeremy P</creatorcontrib><creatorcontrib>Epand, Richard M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, Sarah M. A</au><au>Epand, Raquel F</au><au>Bradshaw, Jeremy P</au><au>Epand, Richard M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of Lipid Polymorphism by the Feline Leukemia Virus Fusion Peptide: Implications for the Fusion Mechanism</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1998-04-21</date><risdate>1998</risdate><volume>37</volume><issue>16</issue><spage>5720</spage><epage>5729</epage><pages>5720-5729</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The structural effects of the fusion peptide of feline leukemia virus (FeLV) on lipid polymorphism were studied, using differential scanning calorimetry (DSC), 31P nuclear magnetic resonance (NMR), and time-resolved X-ray diffraction. This peptide lowers the bilayer to inverted hexagonal phase transition temperature, T H, of dipalmitoleoylphosphatidylethanolamine (DiPoPE) at peptide mole fractions of up to 1.5 × 10-3 at pH 5.0 and at pH 7.4. The temperature at which isotropic 31P NMR signals for monomethyldioleoylphosphatidylethanolamine (MeDOPE) first occurred is lowered by the FeLV peptide. The amount of isotropic signal seen at 40 °C is directly correlated to the peptide:lipid molar ratio. In the peptide-containing samples, more lipid remains in the isotropic state over the whole recorded temperature range. Isotropic 31P NMR signals were observed for DiPoPE in the presence of the FeLV peptide for the entire recorded temperature range of 35−50 °C, while pure DiPoPE showed no significant amount of isotropic signal. X-ray studies of DiPoPE show the formation of a new lipid phase with peptide, which is not seen in the pure lipid samples. Disordering of the Lα phase is evidenced by broadening of the diffraction peaks, and the hexagonal cell parameter is decreased with peptide present. Our results suggest that the FeLV peptide is increasing the negative curvature of the lipid system, which is thought to be crucial to the formation of highly bent, high-energy structural fusion intermediates, such as the “stalk” model. Fusion activity for this putative fusogenic peptide was also demonstrated, using a resonance energy transfer (RET) lipid mixing assay. To our knowledge, this work provides the first published experimental evidence of both fusogenic activity and effects on lipid polymorphism for the FeLV fusion peptide.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>9548958</pmid><doi>10.1021/bi980227v</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 1998-04, Vol.37 (16), p.5720-5729 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_79809525 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Amino Acid Sequence Calorimetry, Differential Scanning Leukemia Virus, Feline - chemistry Leukemia Virus, Feline - physiology Lipid Bilayers - chemistry Lipid Bilayers - metabolism Liposomes Magnetic Resonance Spectroscopy Membrane Fusion - drug effects Molecular Sequence Data Phosphatidylethanolamines - chemistry Phosphorus Isotopes Viral Fusion Proteins - chemistry Viral Fusion Proteins - physiology X-Ray Diffraction |
title | Modulation of Lipid Polymorphism by the Feline Leukemia Virus Fusion Peptide: Implications for the Fusion Mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20Lipid%20Polymorphism%20by%20the%20Feline%20Leukemia%20Virus%20Fusion%20Peptide:%E2%80%89%20Implications%20for%20the%20Fusion%20Mechanism&rft.jtitle=Biochemistry%20(Easton)&rft.au=Davies,%20Sarah%20M.%20A&rft.date=1998-04-21&rft.volume=37&rft.issue=16&rft.spage=5720&rft.epage=5729&rft.pages=5720-5729&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi980227v&rft_dat=%3Cproquest_cross%3E79809525%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a379t-55d1443ac5b60e949aa31207734b312024674c497f429f56e1c859857c76130e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16413749&rft_id=info:pmid/9548958&rfr_iscdi=true |