Loading…
Hydrogen Peroxide Induces Up-Regulation of Fas in Human Endothelial Cells
Hydrogen peroxide (H2O2), an oxidant generated by inflammatory cells, is an important mediator of injury of endothelial cells (ECs). Here we show that H2O2 induces up-regulation of the expression of Fas, a death signal, in human ECs in culture. Flow cytometric analysis with a mAb against human Fas s...
Saved in:
Published in: | The Journal of immunology (1950) 1998-04, Vol.160 (8), p.4042-4047 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrogen peroxide (H2O2), an oxidant generated by inflammatory cells, is an important mediator of injury of endothelial cells (ECs). Here we show that H2O2 induces up-regulation of the expression of Fas, a death signal, in human ECs in culture. Flow cytometric analysis with a mAb against human Fas showed that incubation for 24 h with H2O2 induced a dose-dependent increase in the level of Fas in ECs. Coincubation with catalase, which rapidly degrades H2O2, inhibited H2O2-induced up-regulation of Fas. H2O2 also induced a dose-dependent increase in Fas mRNA level. A significant increase in Fas mRNA levels was observed from 6 h after stimulation with H2O2. Vanadate, a protein phosphatase inhibitor, significantly enhanced Fas mRNA and protein levels in H2O2-treated ECs. On the other hand, genistein, a tyrosine kinase inhibitor, inhibited H2O2-induced Fas mRNA expression. Furthermore, a flow cytometric method with propidium iodide staining and electron microscopic analysis showed that incubation with an agonistic Ab against Fas (anti-Fas IgM) induced apoptosis in H2O2-treated cells. These findings suggest that H2O2 induces up-regulation of Fas in ECs and that activation of protein tyrosine kinase may be involved in the mechanism of H2O2-induced Fas expression. Therefore, Fas-mediated apoptosis may have a pathologic role in H2O2-induced EC injury and thereby provide a new therapeutic target. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.160.8.4042 |