Loading…

VR interaction techniques for medical imaging applications

Methods of virtual reality (VR) offer new ways of human–computer interaction. Medicine is predestined to benefit from this new technology in many ways. Virtual environments can support physicians in their work, alleviate communication between specialists from different fields or be established in ed...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods and programs in biomedicine 1998-04, Vol.56 (1), p.65-74
Main Authors: Krapichler, Christian, Haubner, Michael, Engelbrecht, Rolf, Englmeier, Karl-Hans
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c503t-987e926c765e2630b1ddea96221b072b2e6ca0bed3c089b7d398cd9f6ae3fd933
cites cdi_FETCH-LOGICAL-c503t-987e926c765e2630b1ddea96221b072b2e6ca0bed3c089b7d398cd9f6ae3fd933
container_end_page 74
container_issue 1
container_start_page 65
container_title Computer methods and programs in biomedicine
container_volume 56
creator Krapichler, Christian
Haubner, Michael
Engelbrecht, Rolf
Englmeier, Karl-Hans
description Methods of virtual reality (VR) offer new ways of human–computer interaction. Medicine is predestined to benefit from this new technology in many ways. Virtual environments can support physicians in their work, alleviate communication between specialists from different fields or be established in educational and training applications. For the field of visualization and analysis of three-dimensional anatomical images (e.g. CT or MRI scans), an application is introduced which expedites recognition of spatial coherencies and the exploration and manipulation of the 3D data. To avoid long periods of learning and accustoming and to facilitate work in such an environment, a powerful human-oriented interface is required allowing interactions similar to the real world and utilization of our natural experiences. This paper shows the use of eye tracking parameters for a level-of-detail algorithm and the integration of a glove-based hand gesture recognition into the virtual environment as an essential component of the human–machine interface. Furthermore, virtual bronchoscopy and virtual angioscopy are presented as examples for the use of the virtual environment.
doi_str_mv 10.1016/S0169-2607(98)00007-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79928339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260798000078</els_id><sourcerecordid>338244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-987e926c765e2630b1ddea96221b072b2e6ca0bed3c089b7d398cd9f6ae3fd933</originalsourceid><addsrcrecordid>eNqFkctKAzEUhoMotVYfoTALEV2M5tLc3IgUb1AQvG1DJnNGI9OZMZkKvr3phW6bRQI530kO34_QmOBLgom4ek2bzqnA8lyrC5yWzNUeGhIlaS654PtouEUO0VGM34mhnIsBGmhBJKdqiK4_XjLf9BCs633bZD24r8b_LCBmVRuyOZTe2Trzc_vpm8_Mdl2dLpZoPEYHla0jnGzOEXq_v3ubPuaz54en6e0sdxyzPtdKgqbCScGBCoYLUpZgtaCUFFjSgoJwFhdQMoeVLmTJtHKlroQFVpWasRE6W7_bhXY5WG_mPjqoa9tAu4hGak0VY3onSIWaCCnFbpAwMaEYJ5CvQRfaGANUpgtJRfgzBJtlCmaVglkqNlqZVQpGpb7x5oNFkRRuuzbaU_10U7cx6a2CbZyPW4xSliiesJs1Bknvr4dgovPQuBRKANebsvU7BvkH6GSi4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21364200</pqid></control><display><type>article</type><title>VR interaction techniques for medical imaging applications</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Krapichler, Christian ; Haubner, Michael ; Engelbrecht, Rolf ; Englmeier, Karl-Hans</creator><creatorcontrib>Krapichler, Christian ; Haubner, Michael ; Engelbrecht, Rolf ; Englmeier, Karl-Hans</creatorcontrib><description>Methods of virtual reality (VR) offer new ways of human–computer interaction. Medicine is predestined to benefit from this new technology in many ways. Virtual environments can support physicians in their work, alleviate communication between specialists from different fields or be established in educational and training applications. For the field of visualization and analysis of three-dimensional anatomical images (e.g. CT or MRI scans), an application is introduced which expedites recognition of spatial coherencies and the exploration and manipulation of the 3D data. To avoid long periods of learning and accustoming and to facilitate work in such an environment, a powerful human-oriented interface is required allowing interactions similar to the real world and utilization of our natural experiences. This paper shows the use of eye tracking parameters for a level-of-detail algorithm and the integration of a glove-based hand gesture recognition into the virtual environment as an essential component of the human–machine interface. Furthermore, virtual bronchoscopy and virtual angioscopy are presented as examples for the use of the virtual environment.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/S0169-2607(98)00007-8</identifier><identifier>PMID: 9617528</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Diagnosis, Computer-Assisted - methods ; Eye tracking ; Gesture recognition ; Human computer interaction ; Humans ; Image Processing, Computer-Assisted - methods ; Man machine systems ; Man–machine communication ; Medical applications ; Medical computing and teaching ; Medical imaging ; Medical sciences ; Medicine ; Pattern recognition ; User interfaces ; Virtual reality</subject><ispartof>Computer methods and programs in biomedicine, 1998-04, Vol.56 (1), p.65-74</ispartof><rights>1998 Elsevier Science Ireland Ltd</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-987e926c765e2630b1ddea96221b072b2e6ca0bed3c089b7d398cd9f6ae3fd933</citedby><cites>FETCH-LOGICAL-c503t-987e926c765e2630b1ddea96221b072b2e6ca0bed3c089b7d398cd9f6ae3fd933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2235285$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9617528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krapichler, Christian</creatorcontrib><creatorcontrib>Haubner, Michael</creatorcontrib><creatorcontrib>Engelbrecht, Rolf</creatorcontrib><creatorcontrib>Englmeier, Karl-Hans</creatorcontrib><title>VR interaction techniques for medical imaging applications</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Methods of virtual reality (VR) offer new ways of human–computer interaction. Medicine is predestined to benefit from this new technology in many ways. Virtual environments can support physicians in their work, alleviate communication between specialists from different fields or be established in educational and training applications. For the field of visualization and analysis of three-dimensional anatomical images (e.g. CT or MRI scans), an application is introduced which expedites recognition of spatial coherencies and the exploration and manipulation of the 3D data. To avoid long periods of learning and accustoming and to facilitate work in such an environment, a powerful human-oriented interface is required allowing interactions similar to the real world and utilization of our natural experiences. This paper shows the use of eye tracking parameters for a level-of-detail algorithm and the integration of a glove-based hand gesture recognition into the virtual environment as an essential component of the human–machine interface. Furthermore, virtual bronchoscopy and virtual angioscopy are presented as examples for the use of the virtual environment.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Eye tracking</subject><subject>Gesture recognition</subject><subject>Human computer interaction</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Man machine systems</subject><subject>Man–machine communication</subject><subject>Medical applications</subject><subject>Medical computing and teaching</subject><subject>Medical imaging</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Pattern recognition</subject><subject>User interfaces</subject><subject>Virtual reality</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkctKAzEUhoMotVYfoTALEV2M5tLc3IgUb1AQvG1DJnNGI9OZMZkKvr3phW6bRQI530kO34_QmOBLgom4ek2bzqnA8lyrC5yWzNUeGhIlaS654PtouEUO0VGM34mhnIsBGmhBJKdqiK4_XjLf9BCs633bZD24r8b_LCBmVRuyOZTe2Trzc_vpm8_Mdl2dLpZoPEYHla0jnGzOEXq_v3ubPuaz54en6e0sdxyzPtdKgqbCScGBCoYLUpZgtaCUFFjSgoJwFhdQMoeVLmTJtHKlroQFVpWasRE6W7_bhXY5WG_mPjqoa9tAu4hGak0VY3onSIWaCCnFbpAwMaEYJ5CvQRfaGANUpgtJRfgzBJtlCmaVglkqNlqZVQpGpb7x5oNFkRRuuzbaU_10U7cx6a2CbZyPW4xSliiesJs1Bknvr4dgovPQuBRKANebsvU7BvkH6GSi4g</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Krapichler, Christian</creator><creator>Haubner, Michael</creator><creator>Engelbrecht, Rolf</creator><creator>Englmeier, Karl-Hans</creator><general>Elsevier Ireland Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19980401</creationdate><title>VR interaction techniques for medical imaging applications</title><author>Krapichler, Christian ; Haubner, Michael ; Engelbrecht, Rolf ; Englmeier, Karl-Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-987e926c765e2630b1ddea96221b072b2e6ca0bed3c089b7d398cd9f6ae3fd933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Eye tracking</topic><topic>Gesture recognition</topic><topic>Human computer interaction</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Man machine systems</topic><topic>Man–machine communication</topic><topic>Medical applications</topic><topic>Medical computing and teaching</topic><topic>Medical imaging</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Pattern recognition</topic><topic>User interfaces</topic><topic>Virtual reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krapichler, Christian</creatorcontrib><creatorcontrib>Haubner, Michael</creatorcontrib><creatorcontrib>Engelbrecht, Rolf</creatorcontrib><creatorcontrib>Englmeier, Karl-Hans</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krapichler, Christian</au><au>Haubner, Michael</au><au>Engelbrecht, Rolf</au><au>Englmeier, Karl-Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VR interaction techniques for medical imaging applications</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>1998-04-01</date><risdate>1998</risdate><volume>56</volume><issue>1</issue><spage>65</spage><epage>74</epage><pages>65-74</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Methods of virtual reality (VR) offer new ways of human–computer interaction. Medicine is predestined to benefit from this new technology in many ways. Virtual environments can support physicians in their work, alleviate communication between specialists from different fields or be established in educational and training applications. For the field of visualization and analysis of three-dimensional anatomical images (e.g. CT or MRI scans), an application is introduced which expedites recognition of spatial coherencies and the exploration and manipulation of the 3D data. To avoid long periods of learning and accustoming and to facilitate work in such an environment, a powerful human-oriented interface is required allowing interactions similar to the real world and utilization of our natural experiences. This paper shows the use of eye tracking parameters for a level-of-detail algorithm and the integration of a glove-based hand gesture recognition into the virtual environment as an essential component of the human–machine interface. Furthermore, virtual bronchoscopy and virtual angioscopy are presented as examples for the use of the virtual environment.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>9617528</pmid><doi>10.1016/S0169-2607(98)00007-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 1998-04, Vol.56 (1), p.65-74
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_79928339
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Algorithms
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Diagnosis, Computer-Assisted - methods
Eye tracking
Gesture recognition
Human computer interaction
Humans
Image Processing, Computer-Assisted - methods
Man machine systems
Man–machine communication
Medical applications
Medical computing and teaching
Medical imaging
Medical sciences
Medicine
Pattern recognition
User interfaces
Virtual reality
title VR interaction techniques for medical imaging applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VR%20interaction%20techniques%20for%20medical%20imaging%20applications&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Krapichler,%20Christian&rft.date=1998-04-01&rft.volume=56&rft.issue=1&rft.spage=65&rft.epage=74&rft.pages=65-74&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/S0169-2607(98)00007-8&rft_dat=%3Cproquest_cross%3E338244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-987e926c765e2630b1ddea96221b072b2e6ca0bed3c089b7d398cd9f6ae3fd933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21364200&rft_id=info:pmid/9617528&rfr_iscdi=true