Loading…

Unique composition of the preprotein translocase of the outer mitochondrial membrane from plants

Transport of most nuclear encoded mitochondrial proteins into mitochondria is mediated by heteropolymeric translocases in the membranes of the organelles. The t ranslocase of the o uter mitochondrial m embrane (TOM) was characterized in fungi, and it was shown that TOM from yeast comprises nine diff...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1998-07, Vol.273 (27), p.17251-17257
Main Authors: Jansch, L. (Universitat Hannover, Hannover, Germany.), Kruft, V, Schmitz, U.K, Braun, H.P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-409ddc78223a454a2bb4d1d582038fd776ad235ee63a2ae944dcc6f35baa90d53
cites cdi_FETCH-LOGICAL-c418t-409ddc78223a454a2bb4d1d582038fd776ad235ee63a2ae944dcc6f35baa90d53
container_end_page 17257
container_issue 27
container_start_page 17251
container_title The Journal of biological chemistry
container_volume 273
creator Jansch, L. (Universitat Hannover, Hannover, Germany.)
Kruft, V
Schmitz, U.K
Braun, H.P
description Transport of most nuclear encoded mitochondrial proteins into mitochondria is mediated by heteropolymeric translocases in the membranes of the organelles. The t ranslocase of the o uter mitochondrial m embrane (TOM) was characterized in fungi, and it was shown that TOM from yeast comprises nine different subunits. This publication is the first report on the preparation of the TOM complex from plant mitochondria. The protein complex from potato was purified by ( a ) blue native polyacrylamide gel electrophoresis and ( b ) by immunoaffinity chromatography. On blue native gels, the potato TOM complex runs close to cytochrome c oxidase at 230 kDa and hence only comprises about half of the size of fungal TOM complexes. Analysis of the TOM complex from potato by SDS-polyacrylamide gel electrophoresis allows separation of seven different subunits of 70, 36, 23, 9, 8, 7, and 6 kDa. The 23-kDa protein is identical to the previously characterized potato TOM20 receptor, as shown by in vitro assembly of this protein into the 230-kDa complex, by immunoblotting and by direct protein sequencing. Partial amino acid sequence data of the other subunits allowed us to identify sequence similarity between the 36-kDa protein and fungal TOM40. Sequence analysis of cDNAs encoding the 7-kDa protein revealed significant sequence homology of this protein to TOM7 from yeast. However, potato TOM7 has a N-terminal extension, which is very rich in basic amino acids. Counterparts to the TOM22 and TOM37 proteins from yeast seem to be absent in the potato TOM complex, whereas an additional low molecular mass subunit occurs. Functional implications of these findings are discussed.
doi_str_mv 10.1074/jbc.273.27.17251
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79967666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16448493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-409ddc78223a454a2bb4d1d582038fd776ad235ee63a2ae944dcc6f35baa90d53</originalsourceid><addsrcrecordid>eNqFkL1vFDEQxS0ECpeEngbJBaLbw19rr0sUBYIUiSKclM547dmco_V6sX1C_Pcx3EGHGGk0xXvzNPND6DUlW0qUeP84ui1TvPWWKtbTZ2hDycA73tP752hDCKOdZv3wEp2X8khaCU3P0JmWgjEtN-jbbgnfD4BdimsqoYa04DThuge8ZlhzqhAWXLNdypycLfBHTYcKGcdQk9unxedgZxwhjs0JeMop4nW2Sy2X6MVk5wKvTvMC7T5ef7266W6_fPp89eG2c4IOtRNEe-_UwBi3oheWjaPw1PcDI3yYvFLSesZ7AMkts6CF8M7JifejtZr4nl-gd8fcdnN7qFQTQ3EwtyMgHYpRWkslpfyvkUohBqF5M5Kj0eVUSobJrDlEm38aSswv-qbRN41-a_Obflt5c8o-jBH834UT7qa_Per78LD_ETKYMTR-EP8RM9lk7EMOxezuqNaKaK4l4U-UN5b0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16448493</pqid></control><display><type>article</type><title>Unique composition of the preprotein translocase of the outer mitochondrial membrane from plants</title><source>Elsevier ScienceDirect Journals</source><creator>Jansch, L. (Universitat Hannover, Hannover, Germany.) ; Kruft, V ; Schmitz, U.K ; Braun, H.P</creator><creatorcontrib>Jansch, L. (Universitat Hannover, Hannover, Germany.) ; Kruft, V ; Schmitz, U.K ; Braun, H.P</creatorcontrib><description>Transport of most nuclear encoded mitochondrial proteins into mitochondria is mediated by heteropolymeric translocases in the membranes of the organelles. The t ranslocase of the o uter mitochondrial m embrane (TOM) was characterized in fungi, and it was shown that TOM from yeast comprises nine different subunits. This publication is the first report on the preparation of the TOM complex from plant mitochondria. The protein complex from potato was purified by ( a ) blue native polyacrylamide gel electrophoresis and ( b ) by immunoaffinity chromatography. On blue native gels, the potato TOM complex runs close to cytochrome c oxidase at 230 kDa and hence only comprises about half of the size of fungal TOM complexes. Analysis of the TOM complex from potato by SDS-polyacrylamide gel electrophoresis allows separation of seven different subunits of 70, 36, 23, 9, 8, 7, and 6 kDa. The 23-kDa protein is identical to the previously characterized potato TOM20 receptor, as shown by in vitro assembly of this protein into the 230-kDa complex, by immunoblotting and by direct protein sequencing. Partial amino acid sequence data of the other subunits allowed us to identify sequence similarity between the 36-kDa protein and fungal TOM40. Sequence analysis of cDNAs encoding the 7-kDa protein revealed significant sequence homology of this protein to TOM7 from yeast. However, potato TOM7 has a N-terminal extension, which is very rich in basic amino acids. Counterparts to the TOM22 and TOM37 proteins from yeast seem to be absent in the potato TOM complex, whereas an additional low molecular mass subunit occurs. Functional implications of these findings are discussed.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.273.27.17251</identifier><identifier>PMID: 9642296</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - isolation &amp; purification ; Adenosine Triphosphatases - metabolism ; ADN ; Amino Acid Sequence ; AMINO ACID SEQUENCES ; Bacterial Proteins - genetics ; Bacterial Proteins - isolation &amp; purification ; Bacterial Proteins - metabolism ; Base Sequence ; BINDING PROTEINS ; CELL MEMBRANES ; CHEMICAL COMPOSITION ; Chromatography, Affinity - methods ; Cloning, Molecular ; COMPLEMENTARY DNA ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; DNA ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli Proteins ; GENBANK/Y16228 ; Intracellular Membranes - enzymology ; MEMBRANAS CELULARES ; MEMBRANE CELLULAIRE ; Membrane Transport Proteins ; MITOCHONDRIA ; Mitochondria - enzymology ; MITOCHONDRIE ; MITOCONDRIA ; MOLECULAR SEQUENCE DATA ; MOLECULAR WEIGHT ; NUCLEOTIDE SEQUENCE ; PESO MOLECULAR ; POIDS MOLECULAIRE ; PROTEINAS ; PROTEINAS AGLUTINANTES ; PROTEINE ; PROTEINE DE LIAISON ; PROTEINS ; PURIFICACION ; PURIFICATION ; SEC Translocation Channels ; SecA Proteins ; SECUENCIA NUCLEOTIDICA ; Sequence Homology, Amino Acid ; SEQUENCE NUCLEOTIDIQUE ; SOLANUM TUBEROSUM ; Solanum tuberosum - enzymology ; SUBUNIT COMPOSITION</subject><ispartof>The Journal of biological chemistry, 1998-07, Vol.273 (27), p.17251-17257</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-409ddc78223a454a2bb4d1d582038fd776ad235ee63a2ae944dcc6f35baa90d53</citedby><cites>FETCH-LOGICAL-c418t-409ddc78223a454a2bb4d1d582038fd776ad235ee63a2ae944dcc6f35baa90d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9642296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jansch, L. (Universitat Hannover, Hannover, Germany.)</creatorcontrib><creatorcontrib>Kruft, V</creatorcontrib><creatorcontrib>Schmitz, U.K</creatorcontrib><creatorcontrib>Braun, H.P</creatorcontrib><title>Unique composition of the preprotein translocase of the outer mitochondrial membrane from plants</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Transport of most nuclear encoded mitochondrial proteins into mitochondria is mediated by heteropolymeric translocases in the membranes of the organelles. The t ranslocase of the o uter mitochondrial m embrane (TOM) was characterized in fungi, and it was shown that TOM from yeast comprises nine different subunits. This publication is the first report on the preparation of the TOM complex from plant mitochondria. The protein complex from potato was purified by ( a ) blue native polyacrylamide gel electrophoresis and ( b ) by immunoaffinity chromatography. On blue native gels, the potato TOM complex runs close to cytochrome c oxidase at 230 kDa and hence only comprises about half of the size of fungal TOM complexes. Analysis of the TOM complex from potato by SDS-polyacrylamide gel electrophoresis allows separation of seven different subunits of 70, 36, 23, 9, 8, 7, and 6 kDa. The 23-kDa protein is identical to the previously characterized potato TOM20 receptor, as shown by in vitro assembly of this protein into the 230-kDa complex, by immunoblotting and by direct protein sequencing. Partial amino acid sequence data of the other subunits allowed us to identify sequence similarity between the 36-kDa protein and fungal TOM40. Sequence analysis of cDNAs encoding the 7-kDa protein revealed significant sequence homology of this protein to TOM7 from yeast. However, potato TOM7 has a N-terminal extension, which is very rich in basic amino acids. Counterparts to the TOM22 and TOM37 proteins from yeast seem to be absent in the potato TOM complex, whereas an additional low molecular mass subunit occurs. Functional implications of these findings are discussed.</description><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - isolation &amp; purification</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>ADN</subject><subject>Amino Acid Sequence</subject><subject>AMINO ACID SEQUENCES</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - isolation &amp; purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>BINDING PROTEINS</subject><subject>CELL MEMBRANES</subject><subject>CHEMICAL COMPOSITION</subject><subject>Chromatography, Affinity - methods</subject><subject>Cloning, Molecular</subject><subject>COMPLEMENTARY DNA</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>DNA</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Escherichia coli Proteins</subject><subject>GENBANK/Y16228</subject><subject>Intracellular Membranes - enzymology</subject><subject>MEMBRANAS CELULARES</subject><subject>MEMBRANE CELLULAIRE</subject><subject>Membrane Transport Proteins</subject><subject>MITOCHONDRIA</subject><subject>Mitochondria - enzymology</subject><subject>MITOCHONDRIE</subject><subject>MITOCONDRIA</subject><subject>MOLECULAR SEQUENCE DATA</subject><subject>MOLECULAR WEIGHT</subject><subject>NUCLEOTIDE SEQUENCE</subject><subject>PESO MOLECULAR</subject><subject>POIDS MOLECULAIRE</subject><subject>PROTEINAS</subject><subject>PROTEINAS AGLUTINANTES</subject><subject>PROTEINE</subject><subject>PROTEINE DE LIAISON</subject><subject>PROTEINS</subject><subject>PURIFICACION</subject><subject>PURIFICATION</subject><subject>SEC Translocation Channels</subject><subject>SecA Proteins</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>Sequence Homology, Amino Acid</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>SOLANUM TUBEROSUM</subject><subject>Solanum tuberosum - enzymology</subject><subject>SUBUNIT COMPOSITION</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkL1vFDEQxS0ECpeEngbJBaLbw19rr0sUBYIUiSKclM547dmco_V6sX1C_Pcx3EGHGGk0xXvzNPND6DUlW0qUeP84ui1TvPWWKtbTZ2hDycA73tP752hDCKOdZv3wEp2X8khaCU3P0JmWgjEtN-jbbgnfD4BdimsqoYa04DThuge8ZlhzqhAWXLNdypycLfBHTYcKGcdQk9unxedgZxwhjs0JeMop4nW2Sy2X6MVk5wKvTvMC7T5ef7266W6_fPp89eG2c4IOtRNEe-_UwBi3oheWjaPw1PcDI3yYvFLSesZ7AMkts6CF8M7JifejtZr4nl-gd8fcdnN7qFQTQ3EwtyMgHYpRWkslpfyvkUohBqF5M5Kj0eVUSobJrDlEm38aSswv-qbRN41-a_Obflt5c8o-jBH834UT7qa_Per78LD_ETKYMTR-EP8RM9lk7EMOxezuqNaKaK4l4U-UN5b0</recordid><startdate>19980703</startdate><enddate>19980703</enddate><creator>Jansch, L. (Universitat Hannover, Hannover, Germany.)</creator><creator>Kruft, V</creator><creator>Schmitz, U.K</creator><creator>Braun, H.P</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19980703</creationdate><title>Unique composition of the preprotein translocase of the outer mitochondrial membrane from plants</title><author>Jansch, L. (Universitat Hannover, Hannover, Germany.) ; Kruft, V ; Schmitz, U.K ; Braun, H.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-409ddc78223a454a2bb4d1d582038fd776ad235ee63a2ae944dcc6f35baa90d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - isolation &amp; purification</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>ADN</topic><topic>Amino Acid Sequence</topic><topic>AMINO ACID SEQUENCES</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - isolation &amp; purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>BINDING PROTEINS</topic><topic>CELL MEMBRANES</topic><topic>CHEMICAL COMPOSITION</topic><topic>Chromatography, Affinity - methods</topic><topic>Cloning, Molecular</topic><topic>COMPLEMENTARY DNA</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>DNA</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Escherichia coli Proteins</topic><topic>GENBANK/Y16228</topic><topic>Intracellular Membranes - enzymology</topic><topic>MEMBRANAS CELULARES</topic><topic>MEMBRANE CELLULAIRE</topic><topic>Membrane Transport Proteins</topic><topic>MITOCHONDRIA</topic><topic>Mitochondria - enzymology</topic><topic>MITOCHONDRIE</topic><topic>MITOCONDRIA</topic><topic>MOLECULAR SEQUENCE DATA</topic><topic>MOLECULAR WEIGHT</topic><topic>NUCLEOTIDE SEQUENCE</topic><topic>PESO MOLECULAR</topic><topic>POIDS MOLECULAIRE</topic><topic>PROTEINAS</topic><topic>PROTEINAS AGLUTINANTES</topic><topic>PROTEINE</topic><topic>PROTEINE DE LIAISON</topic><topic>PROTEINS</topic><topic>PURIFICACION</topic><topic>PURIFICATION</topic><topic>SEC Translocation Channels</topic><topic>SecA Proteins</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>Sequence Homology, Amino Acid</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>SOLANUM TUBEROSUM</topic><topic>Solanum tuberosum - enzymology</topic><topic>SUBUNIT COMPOSITION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jansch, L. (Universitat Hannover, Hannover, Germany.)</creatorcontrib><creatorcontrib>Kruft, V</creatorcontrib><creatorcontrib>Schmitz, U.K</creatorcontrib><creatorcontrib>Braun, H.P</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jansch, L. (Universitat Hannover, Hannover, Germany.)</au><au>Kruft, V</au><au>Schmitz, U.K</au><au>Braun, H.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique composition of the preprotein translocase of the outer mitochondrial membrane from plants</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1998-07-03</date><risdate>1998</risdate><volume>273</volume><issue>27</issue><spage>17251</spage><epage>17257</epage><pages>17251-17257</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Transport of most nuclear encoded mitochondrial proteins into mitochondria is mediated by heteropolymeric translocases in the membranes of the organelles. The t ranslocase of the o uter mitochondrial m embrane (TOM) was characterized in fungi, and it was shown that TOM from yeast comprises nine different subunits. This publication is the first report on the preparation of the TOM complex from plant mitochondria. The protein complex from potato was purified by ( a ) blue native polyacrylamide gel electrophoresis and ( b ) by immunoaffinity chromatography. On blue native gels, the potato TOM complex runs close to cytochrome c oxidase at 230 kDa and hence only comprises about half of the size of fungal TOM complexes. Analysis of the TOM complex from potato by SDS-polyacrylamide gel electrophoresis allows separation of seven different subunits of 70, 36, 23, 9, 8, 7, and 6 kDa. The 23-kDa protein is identical to the previously characterized potato TOM20 receptor, as shown by in vitro assembly of this protein into the 230-kDa complex, by immunoblotting and by direct protein sequencing. Partial amino acid sequence data of the other subunits allowed us to identify sequence similarity between the 36-kDa protein and fungal TOM40. Sequence analysis of cDNAs encoding the 7-kDa protein revealed significant sequence homology of this protein to TOM7 from yeast. However, potato TOM7 has a N-terminal extension, which is very rich in basic amino acids. Counterparts to the TOM22 and TOM37 proteins from yeast seem to be absent in the potato TOM complex, whereas an additional low molecular mass subunit occurs. Functional implications of these findings are discussed.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>9642296</pmid><doi>10.1074/jbc.273.27.17251</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1998-07, Vol.273 (27), p.17251-17257
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_79967666
source Elsevier ScienceDirect Journals
subjects Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - isolation & purification
Adenosine Triphosphatases - metabolism
ADN
Amino Acid Sequence
AMINO ACID SEQUENCES
Bacterial Proteins - genetics
Bacterial Proteins - isolation & purification
Bacterial Proteins - metabolism
Base Sequence
BINDING PROTEINS
CELL MEMBRANES
CHEMICAL COMPOSITION
Chromatography, Affinity - methods
Cloning, Molecular
COMPLEMENTARY DNA
COMPOSICION QUIMICA
COMPOSITION CHIMIQUE
DNA
Electrophoresis, Polyacrylamide Gel
Escherichia coli Proteins
GENBANK/Y16228
Intracellular Membranes - enzymology
MEMBRANAS CELULARES
MEMBRANE CELLULAIRE
Membrane Transport Proteins
MITOCHONDRIA
Mitochondria - enzymology
MITOCHONDRIE
MITOCONDRIA
MOLECULAR SEQUENCE DATA
MOLECULAR WEIGHT
NUCLEOTIDE SEQUENCE
PESO MOLECULAR
POIDS MOLECULAIRE
PROTEINAS
PROTEINAS AGLUTINANTES
PROTEINE
PROTEINE DE LIAISON
PROTEINS
PURIFICACION
PURIFICATION
SEC Translocation Channels
SecA Proteins
SECUENCIA NUCLEOTIDICA
Sequence Homology, Amino Acid
SEQUENCE NUCLEOTIDIQUE
SOLANUM TUBEROSUM
Solanum tuberosum - enzymology
SUBUNIT COMPOSITION
title Unique composition of the preprotein translocase of the outer mitochondrial membrane from plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20composition%20of%20the%20preprotein%20translocase%20of%20the%20outer%20mitochondrial%20membrane%20from%20plants&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Jansch,%20L.%20(Universitat%20Hannover,%20Hannover,%20Germany.)&rft.date=1998-07-03&rft.volume=273&rft.issue=27&rft.spage=17251&rft.epage=17257&rft.pages=17251-17257&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.273.27.17251&rft_dat=%3Cproquest_cross%3E16448493%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-409ddc78223a454a2bb4d1d582038fd776ad235ee63a2ae944dcc6f35baa90d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16448493&rft_id=info:pmid/9642296&rfr_iscdi=true