Loading…

Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration

Wolinella succinogenes can grow by anaerobic respiration with fumarate or polysulfide as the terminal electron acceptor, and H2 or formate as the electron donor. A DeltahydABC mutant lacking the hydrogenase structural genes did not grow with H2 and either fumarate or polysulfide. In contrast to the...

Full description

Saved in:
Bibliographic Details
Published in:Archives of microbiology 1998-07, Vol.170 (1), p.50-58
Main Authors: GROSS, R, SIMON, J, THEIS, F, KRĂ–GER, A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wolinella succinogenes can grow by anaerobic respiration with fumarate or polysulfide as the terminal electron acceptor, and H2 or formate as the electron donor. A DeltahydABC mutant lacking the hydrogenase structural genes did not grow with H2 and either fumarate or polysulfide. In contrast to the wild-type strain, the mutant grown with fumarate and with formate instead of H2 did not catalyze the reduction of fumarate, polysulfide, dimethylnaphthoquinone, or benzyl viologen by H2. Growth and enzymic activities were restored upon integration of a plasmid carrying hydABC into the genome of the DeltahydABC mutant. The DeltahydABC mutant was complemented with hydABC operons modified by artificial stop codons in hydA (StopA) or at the 5'-end of hydC (StopC). The StopC mutant lacked HydC, and the hydrophobic C-terminus of HydA was missing in the hydrogenase of the StopA mutant. The two mutants catalyzed benzyl viologen reduction by H2. The enzyme activity was located in the membrane of the mutants. A mutant with both modifications (StopAC) contained the activity in the periplasm. The three mutants did not grow with H2 and either fumarate or polysulfide, and did not catalyze dimethylnaphthoquinone reduction by H2. We conclude that the same hydrogenase serves in the anaerobic respiration with fumarate and with polysulfide. HydC and the C-terminus of HydA appear to be required for both routes of electron transport and for dimethylnaphthoquinone reduction by H2. The hydrogenase is anchored in the membrane by HydC and by the C-terminus of HydA. The catalytic subunit HydB is oriented towards the periplasmic side of the membrane.
ISSN:0302-8933
1432-072X
DOI:10.1007/s002030050614