Loading…

Expression of substrate-specific transporters encoded by Plasmodium falciparum in Xenopus laevis oocytes

When the malarial parasite Plasmodium falciparum multiplies in erythrocytes it dramatically increases uptake of essential metabolic precursors (nucleosides, nucleobases and glucose) and export of lactic acid by undefined mechanisms. The first evidence is provided here, by a detailed study in Xenopus...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and biochemical parasitology 1998-05, Vol.93 (1), p.81-89
Main Authors: Penny, Jeffrey I, Hall, Simone T, Woodrow, Charles J, Cowan, Gill M, Gero, Annette M, Krishna, Sanjeev
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When the malarial parasite Plasmodium falciparum multiplies in erythrocytes it dramatically increases uptake of essential metabolic precursors (nucleosides, nucleobases and glucose) and export of lactic acid by undefined mechanisms. The first evidence is provided here, by a detailed study in Xenopus laevis oocytes, that several specific nutrient transporters are the product of P. falciparum genes. We report the expression of nucleoside, nucleobase, hexose and monocarboxylate transport systems in Xenopus oocytes when injected with mRNA isolated from asexual stages of developing P. falciparum parasites. Their properties are distinct from transport events occurring at the infected erythrocyte membrane or the electrophysiologically identified channel localised to the parasitophorous vacuolar membrane. These novel transporters are substrate-specific and stereoselective, and represent a key regulatory step in the acquisition and export of metabolites by intraerythrocytic P. falciparum.
ISSN:0166-6851
1872-9428
DOI:10.1016/S0166-6851(98)00024-3