Loading…

Activation-Induced Resetting of Cerebral Oxygen and Glucose Uptake in the Rat

In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose and oxyg...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cerebral blood flow and metabolism 1998-07, Vol.18 (7), p.742-748
Main Authors: Madsen, Peter L., Linde, Rasmus, Hasselbalch, Steen G., Paulson, Olaf B., Lassen, Niels A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the clinical setting it has been shown that activation will increase cerebral glucose uptake in excess of cerebral oxygen uptake. To study this phenomenon further, this study presents an experimental setup that enables precise determination of the ratio between cerebral uptake of glucose and oxygen in the awake rat. Global CBF was measured by the Kety-Schmidt technique, and the ratio between cerebral uptake rates for oxygen, glucose, and lactate was calculated from cerebral arterial—venous differences. During baseline conditions, rats were kept in a closed box designed to minimize interference. During baseline conditions CBF was 1.08 ± 0.25 mL·g−1·minute−1, and the cerebral oxygen to glucose uptake ratio was 5.5. Activation was induced by opening the sheltering box for 6 minutes. Activation increased CBF to 1.81 mL·g−1·minute−1. During activation cerebral glucose uptake increased disproportionately to cerebral oxygen uptake, and the cerebral oxygen to glucose uptake ratio was 4.2. The accumulated excess glucose uptake during 6 minutes of activation amounted to 2.4 μmol/g. Activation was terminated by closure of the sheltering box. In the postactivation period, the cerebral oxygen to glucose uptake ratio rose to a maximum of 6.4. This response is exactly opposite to the excess cerebral glucose uptake observed during activation.
ISSN:0271-678X
1559-7016
DOI:10.1097/00004647-199807000-00005