Loading…

Free fatty acids and insulin resistance during pregnancy

The purpose of this study was to determine whether elevation of plasma free fatty acids (FFA) in early pregnancy would cause alterations in insulin-stimulated glucose disposal similar to those occurring in late gestation. Seven glucose-tolerant women underwent 4-h euglycemic hyperinsulinemic (1 mU/k...

Full description

Saved in:
Bibliographic Details
Published in:The journal of clinical endocrinology and metabolism 1998-07, Vol.83 (7), p.2338-2342
Main Authors: SIVAN, E, HOMKO, C. J, WHITTAKER, P. G, REECE, E. A, XINHUA CHEN, BODEN, G
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this study was to determine whether elevation of plasma free fatty acids (FFA) in early pregnancy would cause alterations in insulin-stimulated glucose disposal similar to those occurring in late gestation. Seven glucose-tolerant women underwent 4-h euglycemic hyperinsulinemic (1 mU/kg.min) clamping during the early second trimester of pregnancy (14-17 weeks) on 2 consecutive days, receiving either lipid (Liposyn II; 1.5 mL/min) and heparin (0.4 U/kg.min; L/H) or saline/glycerol (2.25 g/h; S/G) infusions. Rates of total body glucose disposal (6,6-2H2 glucose) and of carbohydrate and fat oxidation (indirect calorimetry) were determined at hourly intervals. Blood glucose was clamped at about 85 mg/dL. Plasma FFA increased from 290 +/- 50 to 1000 +/- 139 mumol/L during L/H infusion and decreased from 351 +/- 60 to 35 +/- 11 mumol/L during S/G infusion. L/H infusion inhibited insulin stimulation of total body glucose disposal by 28% compared with S/G infusion (from 6.7 +/- 0.7 to 4.9 +/- 0.6 mg/kg.min; P < 0.01). L/H infusion increased fat oxidation from 0.73 +/- 0.04 to 1.26 +/- 0.2 mg/kg.min (P < 0.05) and decreased carbohydrate oxidation from 2.0 +/- 0.2 to 1.6 +/- 0.2 mg/kg.min (P < 0.05). Endogenous glucose production decreased equally by approximately 70% during L/H and S/G infusions. These data showed that elevating plasma FFA levels during early pregnancy inhibits total body glucose uptake and oxidation. We conclude that elevation of plasma FFA can contribute to the peripheral insulin resistance commonly observed during late pregnancy.
ISSN:0021-972X
1945-7197
DOI:10.1210/jc.83.7.2338