Loading…
Plant breeding: a long-term strategy for the control of zinc deficiency in vulnerable populations
Because trace minerals are important not only for human nutrition but for plant nutrition as well, plant breeding holds great promise for making a significant, sustainable, low-cost contribution to the reduction of micronutrient deficiencies in humans. It may also have important spinoff effects for...
Saved in:
Published in: | The American journal of clinical nutrition 1998-08, Vol.68 (2S), p.488S-494S |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Because trace minerals are important not only for human nutrition but for plant nutrition as well, plant breeding holds great promise for making a significant, sustainable, low-cost contribution to the reduction of micronutrient deficiencies in humans. It may also have important spinoff effects for increasing farm productivity in developing countries in an environmentally beneficial way. This article describes ongoing plant breeding research that could increase the intake of bioavailable zinc from food staple crops in vulnerable populations in developing countries. The 3 most promising plant breeding strategies toward this goal are as follows: 1) increasing the concentration of zinc, 2) reducing the amount of phytic acid (a strong inhibitor of zinc absorption), and 3) raising the concentrations of sulfur-containing amino acids (thought to promote zinc absorption) in the plant. The agronomic advantages and disadvantages as well as the potential benefits and limitations of each approach for human nutrition are described. Research is currently underway to identify the optimal combination of these approaches that will maximize the effect on human zinc nutrition. |
---|---|
ISSN: | 0002-9165 1938-3207 |
DOI: | 10.1093/ajcn/68.2.488S |