Loading…

Thermoregulatory vasoconstriction decreases cutaneous heat loss

To determine the extent to which thermoregulatory vasoconstriction decreases heat loss to the environment, we measured regional heat flux, average skin temperature, and tympanic membrane temperature before and after thermoregulatory vasoconstriction in five minimally clothed volunteers maintained in...

Full description

Saved in:
Bibliographic Details
Published in:Anesthesiology (Philadelphia) 1990-10, Vol.73 (4), p.656-660
Main Authors: SESSLER, D. I, MOAYERI, A, STOEN, R, GLOSTEN, B, HYNSON, J, MCGUIRE, J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To determine the extent to which thermoregulatory vasoconstriction decreases heat loss to the environment, we measured regional heat flux, average skin temperature, and tympanic membrane temperature before and after thermoregulatory vasoconstriction in five minimally clothed volunteers maintained in a 30.8 +/- 0.1 degrees C environment. Thermoregulatory vasoconstriction was induced by central venous infusion of cooled fluid. Peripheral cutaneous blood flow was evaluated with venous-occlusion volume plethysmography and skin-surface temperature gradients. Laser Doppler flowmetry was used to measure vasoconstriction in centrally located skin. This model mimics the common clinical situation in which patients in a warm environment are centrally cooled by administration of cold intravenous fluids or by lavage of internal cavities with cold fluids. Tympanic membrane temperature decreased 1.5 +/- 0.3 degrees C in the first 15 min after the cold fluid infusion was started and remained approximately 1 degrees C below control values during the rest of the study. Average skin-surface temperature decreased slowly to approximately 0.7 degrees C below control. Flow in capillaries of centrally distributed skin, determined with laser Doppler flowmetry, decreased only approximately 40%. Total heat flux, and flux from the arms and legs decreased approximately 25% (15.5 +/- 0.3 W). Heat loss from the trunk and head decreased only 17%, whereas, loss from the hands and feet (10.5% of the body surface area) decreased approximately 50%. All measured values decreased significantly following vasoconstriction (P less than 0.01). Therefore, thermoregulatory vasoconstriction in a thermoneutral environment appears to decrease cutaneous loss of metabolic heat approximately 25%.
ISSN:0003-3022
1528-1175
DOI:10.1097/00000542-199010000-00011