Loading…

Serpin–ligand interactions

One of the more common features of serpins is the ability to bind various ligands. Ligand binding can occur so that the inhibitory properties of the serpin are regulated, so that the serpin can be localized, or to produce or modulate some other biological function of the serpin. Ligands known to aff...

Full description

Saved in:
Bibliographic Details
Published in:Methods (San Diego, Calif.) Calif.), 2004-02, Vol.32 (2), p.93-109
Main Authors: Patston, Philip A, Church, Frank C, Olson, Steven T
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One of the more common features of serpins is the ability to bind various ligands. Ligand binding can occur so that the inhibitory properties of the serpin are regulated, so that the serpin can be localized, or to produce or modulate some other biological function of the serpin. Ligands known to affect serpin biologic activity include glycosaminoglycans such as heparin, heparan sulfate and dermatan sulfate, DNA, extracellular matrix proteins such as vitronectin and collagen, and small organic molecule hormones. Many different biochemical and biophysical techniques in conjunction with molecular biology and cell biology approaches have been used to study the binding of various ligands to serpins and to assess the influence of this binding on activity and structure. We summarize here the different approaches that have been used to identify serpin ligands and the many methods that have been used to characterize the interactions of these ligands with their cognate serpins.
ISSN:1046-2023
1095-9130
DOI:10.1016/S1046-2023(03)00201-9