Loading…

Plasticity of human chromosome 3 during primate evolution

Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old Wo...

Full description

Saved in:
Bibliographic Details
Published in:Genomics (San Diego, Calif.) Calif.), 2004-02, Vol.83 (2), p.193-202
Main Authors: Tsend-Ayush, Enkhjargal, Grützner, Frank, Yue, Ying, Grossmann, Bärbel, Hänsel, Ulrike, Sudbrak, Ralf, Haaf, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3
cites cdi_FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3
container_end_page 202
container_issue 2
container_start_page 193
container_title Genomics (San Diego, Calif.)
container_volume 83
creator Tsend-Ayush, Enkhjargal
Grützner, Frank
Yue, Ying
Grossmann, Bärbel
Hänsel, Ulrike
Sudbrak, Ralf
Haaf, Thomas
description Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey Presbytis cristata from the simian ancestor. In the New World monkey Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them.
doi_str_mv 10.1016/j.ygeno.2003.08.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80082405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754303002519</els_id><sourcerecordid>17942413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3</originalsourceid><addsrcrecordid>eNqFkT1LxEAQhhdR9Dz9BYKk0S5x9iPJpLCQwy8QtNB6ibsT3SPJ6m4i3L833h3YaTXNMy_vPMPYCYeMAy8ultnqjXqfCQCZAWbAxQ6bccAqxUIVu2wGiJiWuZIH7DDGJQBUEsU-O-CqhEIpnLHqqa3j4IwbVolvkvexq_vEvAff-eg7SmRix-D6t-QjuK4eKKEv346D8_0R22vqNtLxds7Zy8318-IufXi8vV9cPaRG8WJIX7EspbIChMnJYoNVUwKB4TmQzRUqNEIUpCSXUyErlRRUFRZLEJZkY-ScnW9yP4L_HCkOunPRUNvWPfkxagRAoSD_F-RlpYTicgLlBjTBxxio0evjwkpz0D9q9VKv1eoftRpQT2qnrdNt_Pjakf3d2bqcgLMtUEdTt02oe-PiLzf9odj0vNxwNFn7chR0NI56Q9YFMoO23v1Z5BuR7Za2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17942413</pqid></control><display><type>article</type><title>Plasticity of human chromosome 3 during primate evolution</title><source>ScienceDirect Journals</source><creator>Tsend-Ayush, Enkhjargal ; Grützner, Frank ; Yue, Ying ; Grossmann, Bärbel ; Hänsel, Ulrike ; Sudbrak, Ralf ; Haaf, Thomas</creator><creatorcontrib>Tsend-Ayush, Enkhjargal ; Grützner, Frank ; Yue, Ying ; Grossmann, Bärbel ; Hänsel, Ulrike ; Sudbrak, Ralf ; Haaf, Thomas</creatorcontrib><description>Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey Presbytis cristata from the simian ancestor. In the New World monkey Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2003.08.012</identifier><identifier>PMID: 14706448</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Biological evolution ; Callithrix geoffroyi ; Chromosome Breakage - genetics ; Chromosome Mapping ; Chromosomes, Artificial ; Chromosomes, Human, Pair 3 - genetics ; Comparative FISH ; Conservation of chromosomal synteny ; Evolution, Molecular ; Evolutionary chromosome breakpoint ; Fundamental and applied biological sciences. Psychology ; Gene Duplication ; Gene Rearrangement - genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Haplorhini ; Human chromosome evolution ; Humans ; Hylobates syndactylus ; Intragenomic duplication ; Phylogeny ; Pongo pygmaeus ; Presbytis cristata ; Primate genomics ; Synteny - genetics</subject><ispartof>Genomics (San Diego, Calif.), 2004-02, Vol.83 (2), p.193-202</ispartof><rights>2003 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3</citedby><cites>FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15436405$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14706448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsend-Ayush, Enkhjargal</creatorcontrib><creatorcontrib>Grützner, Frank</creatorcontrib><creatorcontrib>Yue, Ying</creatorcontrib><creatorcontrib>Grossmann, Bärbel</creatorcontrib><creatorcontrib>Hänsel, Ulrike</creatorcontrib><creatorcontrib>Sudbrak, Ralf</creatorcontrib><creatorcontrib>Haaf, Thomas</creatorcontrib><title>Plasticity of human chromosome 3 during primate evolution</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey Presbytis cristata from the simian ancestor. In the New World monkey Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological evolution</subject><subject>Callithrix geoffroyi</subject><subject>Chromosome Breakage - genetics</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Artificial</subject><subject>Chromosomes, Human, Pair 3 - genetics</subject><subject>Comparative FISH</subject><subject>Conservation of chromosomal synteny</subject><subject>Evolution, Molecular</subject><subject>Evolutionary chromosome breakpoint</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Duplication</subject><subject>Gene Rearrangement - genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Haplorhini</subject><subject>Human chromosome evolution</subject><subject>Humans</subject><subject>Hylobates syndactylus</subject><subject>Intragenomic duplication</subject><subject>Phylogeny</subject><subject>Pongo pygmaeus</subject><subject>Presbytis cristata</subject><subject>Primate genomics</subject><subject>Synteny - genetics</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkT1LxEAQhhdR9Dz9BYKk0S5x9iPJpLCQwy8QtNB6ibsT3SPJ6m4i3L833h3YaTXNMy_vPMPYCYeMAy8ultnqjXqfCQCZAWbAxQ6bccAqxUIVu2wGiJiWuZIH7DDGJQBUEsU-O-CqhEIpnLHqqa3j4IwbVolvkvexq_vEvAff-eg7SmRix-D6t-QjuK4eKKEv346D8_0R22vqNtLxds7Zy8318-IufXi8vV9cPaRG8WJIX7EspbIChMnJYoNVUwKB4TmQzRUqNEIUpCSXUyErlRRUFRZLEJZkY-ScnW9yP4L_HCkOunPRUNvWPfkxagRAoSD_F-RlpYTicgLlBjTBxxio0evjwkpz0D9q9VKv1eoftRpQT2qnrdNt_Pjakf3d2bqcgLMtUEdTt02oe-PiLzf9odj0vNxwNFn7chR0NI56Q9YFMoO23v1Z5BuR7Za2</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Tsend-Ayush, Enkhjargal</creator><creator>Grützner, Frank</creator><creator>Yue, Ying</creator><creator>Grossmann, Bärbel</creator><creator>Hänsel, Ulrike</creator><creator>Sudbrak, Ralf</creator><creator>Haaf, Thomas</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040201</creationdate><title>Plasticity of human chromosome 3 during primate evolution</title><author>Tsend-Ayush, Enkhjargal ; Grützner, Frank ; Yue, Ying ; Grossmann, Bärbel ; Hänsel, Ulrike ; Sudbrak, Ralf ; Haaf, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological evolution</topic><topic>Callithrix geoffroyi</topic><topic>Chromosome Breakage - genetics</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Artificial</topic><topic>Chromosomes, Human, Pair 3 - genetics</topic><topic>Comparative FISH</topic><topic>Conservation of chromosomal synteny</topic><topic>Evolution, Molecular</topic><topic>Evolutionary chromosome breakpoint</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Duplication</topic><topic>Gene Rearrangement - genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Haplorhini</topic><topic>Human chromosome evolution</topic><topic>Humans</topic><topic>Hylobates syndactylus</topic><topic>Intragenomic duplication</topic><topic>Phylogeny</topic><topic>Pongo pygmaeus</topic><topic>Presbytis cristata</topic><topic>Primate genomics</topic><topic>Synteny - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsend-Ayush, Enkhjargal</creatorcontrib><creatorcontrib>Grützner, Frank</creatorcontrib><creatorcontrib>Yue, Ying</creatorcontrib><creatorcontrib>Grossmann, Bärbel</creatorcontrib><creatorcontrib>Hänsel, Ulrike</creatorcontrib><creatorcontrib>Sudbrak, Ralf</creatorcontrib><creatorcontrib>Haaf, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsend-Ayush, Enkhjargal</au><au>Grützner, Frank</au><au>Yue, Ying</au><au>Grossmann, Bärbel</au><au>Hänsel, Ulrike</au><au>Sudbrak, Ralf</au><au>Haaf, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity of human chromosome 3 during primate evolution</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2004-02-01</date><risdate>2004</risdate><volume>83</volume><issue>2</issue><spage>193</spage><epage>202</epage><pages>193-202</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey Presbytis cristata from the simian ancestor. In the New World monkey Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>14706448</pmid><doi>10.1016/j.ygeno.2003.08.012</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-7543
ispartof Genomics (San Diego, Calif.), 2004-02, Vol.83 (2), p.193-202
issn 0888-7543
1089-8646
language eng
recordid cdi_proquest_miscellaneous_80082405
source ScienceDirect Journals
subjects Animals
Biological and medical sciences
Biological evolution
Callithrix geoffroyi
Chromosome Breakage - genetics
Chromosome Mapping
Chromosomes, Artificial
Chromosomes, Human, Pair 3 - genetics
Comparative FISH
Conservation of chromosomal synteny
Evolution, Molecular
Evolutionary chromosome breakpoint
Fundamental and applied biological sciences. Psychology
Gene Duplication
Gene Rearrangement - genetics
Genetics of eukaryotes. Biological and molecular evolution
Haplorhini
Human chromosome evolution
Humans
Hylobates syndactylus
Intragenomic duplication
Phylogeny
Pongo pygmaeus
Presbytis cristata
Primate genomics
Synteny - genetics
title Plasticity of human chromosome 3 during primate evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20of%20human%20chromosome%203%20during%20primate%20evolution&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Tsend-Ayush,%20Enkhjargal&rft.date=2004-02-01&rft.volume=83&rft.issue=2&rft.spage=193&rft.epage=202&rft.pages=193-202&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2003.08.012&rft_dat=%3Cproquest_cross%3E17942413%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17942413&rft_id=info:pmid/14706448&rfr_iscdi=true