Loading…
Plasticity of human chromosome 3 during primate evolution
Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old Wo...
Saved in:
Published in: | Genomics (San Diego, Calif.) Calif.), 2004-02, Vol.83 (2), p.193-202 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3 |
container_end_page | 202 |
container_issue | 2 |
container_start_page | 193 |
container_title | Genomics (San Diego, Calif.) |
container_volume | 83 |
creator | Tsend-Ayush, Enkhjargal Grützner, Frank Yue, Ying Grossmann, Bärbel Hänsel, Ulrike Sudbrak, Ralf Haaf, Thomas |
description | Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey
Presbytis cristata from the simian ancestor. In the New World monkey
Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them. |
doi_str_mv | 10.1016/j.ygeno.2003.08.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80082405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754303002519</els_id><sourcerecordid>17942413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3</originalsourceid><addsrcrecordid>eNqFkT1LxEAQhhdR9Dz9BYKk0S5x9iPJpLCQwy8QtNB6ibsT3SPJ6m4i3L833h3YaTXNMy_vPMPYCYeMAy8ultnqjXqfCQCZAWbAxQ6bccAqxUIVu2wGiJiWuZIH7DDGJQBUEsU-O-CqhEIpnLHqqa3j4IwbVolvkvexq_vEvAff-eg7SmRix-D6t-QjuK4eKKEv346D8_0R22vqNtLxds7Zy8318-IufXi8vV9cPaRG8WJIX7EspbIChMnJYoNVUwKB4TmQzRUqNEIUpCSXUyErlRRUFRZLEJZkY-ScnW9yP4L_HCkOunPRUNvWPfkxagRAoSD_F-RlpYTicgLlBjTBxxio0evjwkpz0D9q9VKv1eoftRpQT2qnrdNt_Pjakf3d2bqcgLMtUEdTt02oe-PiLzf9odj0vNxwNFn7chR0NI56Q9YFMoO23v1Z5BuR7Za2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17942413</pqid></control><display><type>article</type><title>Plasticity of human chromosome 3 during primate evolution</title><source>ScienceDirect Journals</source><creator>Tsend-Ayush, Enkhjargal ; Grützner, Frank ; Yue, Ying ; Grossmann, Bärbel ; Hänsel, Ulrike ; Sudbrak, Ralf ; Haaf, Thomas</creator><creatorcontrib>Tsend-Ayush, Enkhjargal ; Grützner, Frank ; Yue, Ying ; Grossmann, Bärbel ; Hänsel, Ulrike ; Sudbrak, Ralf ; Haaf, Thomas</creatorcontrib><description>Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey
Presbytis cristata from the simian ancestor. In the New World monkey
Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2003.08.012</identifier><identifier>PMID: 14706448</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Biological evolution ; Callithrix geoffroyi ; Chromosome Breakage - genetics ; Chromosome Mapping ; Chromosomes, Artificial ; Chromosomes, Human, Pair 3 - genetics ; Comparative FISH ; Conservation of chromosomal synteny ; Evolution, Molecular ; Evolutionary chromosome breakpoint ; Fundamental and applied biological sciences. Psychology ; Gene Duplication ; Gene Rearrangement - genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Haplorhini ; Human chromosome evolution ; Humans ; Hylobates syndactylus ; Intragenomic duplication ; Phylogeny ; Pongo pygmaeus ; Presbytis cristata ; Primate genomics ; Synteny - genetics</subject><ispartof>Genomics (San Diego, Calif.), 2004-02, Vol.83 (2), p.193-202</ispartof><rights>2003 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3</citedby><cites>FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15436405$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14706448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsend-Ayush, Enkhjargal</creatorcontrib><creatorcontrib>Grützner, Frank</creatorcontrib><creatorcontrib>Yue, Ying</creatorcontrib><creatorcontrib>Grossmann, Bärbel</creatorcontrib><creatorcontrib>Hänsel, Ulrike</creatorcontrib><creatorcontrib>Sudbrak, Ralf</creatorcontrib><creatorcontrib>Haaf, Thomas</creatorcontrib><title>Plasticity of human chromosome 3 during primate evolution</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey
Presbytis cristata from the simian ancestor. In the New World monkey
Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological evolution</subject><subject>Callithrix geoffroyi</subject><subject>Chromosome Breakage - genetics</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Artificial</subject><subject>Chromosomes, Human, Pair 3 - genetics</subject><subject>Comparative FISH</subject><subject>Conservation of chromosomal synteny</subject><subject>Evolution, Molecular</subject><subject>Evolutionary chromosome breakpoint</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Duplication</subject><subject>Gene Rearrangement - genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Haplorhini</subject><subject>Human chromosome evolution</subject><subject>Humans</subject><subject>Hylobates syndactylus</subject><subject>Intragenomic duplication</subject><subject>Phylogeny</subject><subject>Pongo pygmaeus</subject><subject>Presbytis cristata</subject><subject>Primate genomics</subject><subject>Synteny - genetics</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkT1LxEAQhhdR9Dz9BYKk0S5x9iPJpLCQwy8QtNB6ibsT3SPJ6m4i3L833h3YaTXNMy_vPMPYCYeMAy8ultnqjXqfCQCZAWbAxQ6bccAqxUIVu2wGiJiWuZIH7DDGJQBUEsU-O-CqhEIpnLHqqa3j4IwbVolvkvexq_vEvAff-eg7SmRix-D6t-QjuK4eKKEv346D8_0R22vqNtLxds7Zy8318-IufXi8vV9cPaRG8WJIX7EspbIChMnJYoNVUwKB4TmQzRUqNEIUpCSXUyErlRRUFRZLEJZkY-ScnW9yP4L_HCkOunPRUNvWPfkxagRAoSD_F-RlpYTicgLlBjTBxxio0evjwkpz0D9q9VKv1eoftRpQT2qnrdNt_Pjakf3d2bqcgLMtUEdTt02oe-PiLzf9odj0vNxwNFn7chR0NI56Q9YFMoO23v1Z5BuR7Za2</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Tsend-Ayush, Enkhjargal</creator><creator>Grützner, Frank</creator><creator>Yue, Ying</creator><creator>Grossmann, Bärbel</creator><creator>Hänsel, Ulrike</creator><creator>Sudbrak, Ralf</creator><creator>Haaf, Thomas</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040201</creationdate><title>Plasticity of human chromosome 3 during primate evolution</title><author>Tsend-Ayush, Enkhjargal ; Grützner, Frank ; Yue, Ying ; Grossmann, Bärbel ; Hänsel, Ulrike ; Sudbrak, Ralf ; Haaf, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological evolution</topic><topic>Callithrix geoffroyi</topic><topic>Chromosome Breakage - genetics</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Artificial</topic><topic>Chromosomes, Human, Pair 3 - genetics</topic><topic>Comparative FISH</topic><topic>Conservation of chromosomal synteny</topic><topic>Evolution, Molecular</topic><topic>Evolutionary chromosome breakpoint</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Duplication</topic><topic>Gene Rearrangement - genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Haplorhini</topic><topic>Human chromosome evolution</topic><topic>Humans</topic><topic>Hylobates syndactylus</topic><topic>Intragenomic duplication</topic><topic>Phylogeny</topic><topic>Pongo pygmaeus</topic><topic>Presbytis cristata</topic><topic>Primate genomics</topic><topic>Synteny - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsend-Ayush, Enkhjargal</creatorcontrib><creatorcontrib>Grützner, Frank</creatorcontrib><creatorcontrib>Yue, Ying</creatorcontrib><creatorcontrib>Grossmann, Bärbel</creatorcontrib><creatorcontrib>Hänsel, Ulrike</creatorcontrib><creatorcontrib>Sudbrak, Ralf</creatorcontrib><creatorcontrib>Haaf, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsend-Ayush, Enkhjargal</au><au>Grützner, Frank</au><au>Yue, Ying</au><au>Grossmann, Bärbel</au><au>Hänsel, Ulrike</au><au>Sudbrak, Ralf</au><au>Haaf, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity of human chromosome 3 during primate evolution</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2004-02-01</date><risdate>2004</risdate><volume>83</volume><issue>2</issue><spage>193</spage><epage>202</epage><pages>193-202</pages><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey
Presbytis cristata from the simian ancestor. In the New World monkey
Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>14706448</pmid><doi>10.1016/j.ygeno.2003.08.012</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-7543 |
ispartof | Genomics (San Diego, Calif.), 2004-02, Vol.83 (2), p.193-202 |
issn | 0888-7543 1089-8646 |
language | eng |
recordid | cdi_proquest_miscellaneous_80082405 |
source | ScienceDirect Journals |
subjects | Animals Biological and medical sciences Biological evolution Callithrix geoffroyi Chromosome Breakage - genetics Chromosome Mapping Chromosomes, Artificial Chromosomes, Human, Pair 3 - genetics Comparative FISH Conservation of chromosomal synteny Evolution, Molecular Evolutionary chromosome breakpoint Fundamental and applied biological sciences. Psychology Gene Duplication Gene Rearrangement - genetics Genetics of eukaryotes. Biological and molecular evolution Haplorhini Human chromosome evolution Humans Hylobates syndactylus Intragenomic duplication Phylogeny Pongo pygmaeus Presbytis cristata Primate genomics Synteny - genetics |
title | Plasticity of human chromosome 3 during primate evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20of%20human%20chromosome%203%20during%20primate%20evolution&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Tsend-Ayush,%20Enkhjargal&rft.date=2004-02-01&rft.volume=83&rft.issue=2&rft.spage=193&rft.epage=202&rft.pages=193-202&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2003.08.012&rft_dat=%3Cproquest_cross%3E17942413%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-b87734d202c5ed8f89f70e0c150ed54848c226e4313448d3432e96d8702de3fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17942413&rft_id=info:pmid/14706448&rfr_iscdi=true |