Loading…

Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep

At relatively low cerebrospinal fluid (CSF) pressures, the majority of CSF drainage in 6- to 8-month-old sheep occurs through the cribriform plate into lymphatic vessels in the nasal submucosa. As CSF pressures are elevated, other absorption sites are recruited and these may include transport throug...

Full description

Saved in:
Bibliographic Details
Published in:Microvascular research 2004, Vol.67 (1), p.96-104
Main Authors: Zakharov, A, Papaiconomou, C, Koh, L, Djenic, J, Bozanovic-Sosic, R, Johnston, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At relatively low cerebrospinal fluid (CSF) pressures, the majority of CSF drainage in 6- to 8-month-old sheep occurs through the cribriform plate into lymphatic vessels in the nasal submucosa. As CSF pressures are elevated, other absorption sites are recruited and these may include transport through arachnoid projections. To test for the transport of CSF directly into the venous sinus, the concentration of a tracer ( 131I-human serum albumin [HSA]) administered into the CSF compartment was measured in the confluence of the intracranial venous sinuses (torcular) and in the peripheral blood (inferior vena cava). CSF pressures were adjusted to favor absorption. Enrichment of the CSF tracer in the cranial venous system was most evident when the CSF-venous sinus pressure gradients were high. Peak concentration differences occurred 90 s after the CSF pressures were elevated. When pressure gradients approached 30 cm H 2O, tracer concentrations in the torcular were approximately twofold higher than those observed in peripheral blood. The greatest concentration differences favoring the torcular were obtained when the CSF-venous sinus pressure gradients were elevated to high levels (20- to 40 cm H 2O) and when CSF access to the paranasal lymphatics and CSF transport into the spinal subarachnoid compartment were prevented. In conjunction with previous studies, these results are compatible with the view that CSF absorption in the adult animal can occur directly into the cranial venous system. However, contrary to the established view, this pathway may represent a secondary system that is recruited to compliment lymphatic transport when global absorption capacity is stressed or compromised.
ISSN:0026-2862
1095-9319
DOI:10.1016/j.mvr.2003.08.004