Loading…

Do high functioning persons with autism present superior spatial abilities?

This series of experiments was aimed at assessing spatial abilities in high functioning individuals with autism (HFA), using a human-size labyrinth. In the context of recent findings that the performance of individuals with HFA was superior to typically developing individuals in several non-social c...

Full description

Saved in:
Bibliographic Details
Published in:Neuropsychologia 2004, Vol.42 (4), p.467-481
Main Authors: Caron, M.-J, Mottron, L, Rainville, C, Chouinard, S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This series of experiments was aimed at assessing spatial abilities in high functioning individuals with autism (HFA), using a human-size labyrinth. In the context of recent findings that the performance of individuals with HFA was superior to typically developing individuals in several non-social cognitive operations, it was expected that the HFA group would outperform a typically developing comparison group matched on full-scale IQ. Results showed that individuals with autism performed all spatial tasks at a level at least equivalent to the typically developing comparison group. No differences between groups were found in route and survey tasks. Superior performance for individuals with HFA was found in tasks involving maps, in the form of superior accuracy in graphic cued recall of a path, and shorter learning times in a map learning task. We propose that a superior ability to detect [Human Perception and Performance 27 (3) (2001) 719], match [Journal of Child Psychology and Psychiatry 34 (1993) 1351] and reproduce [Journal of Child Psychology and Psychiatry 40 (5) (1999) 743] simple visual elements yields superior performance in tasks relying on the detection and graphic reproduction of the visual elements composing a map. Enhanced discrimination, detection, and memory for visually simple patterns in autism may account for the superior performance of persons with autism on visuo-spatial tasks that heavily involve pattern recognition, either in the form of recognizing and memorizing landmarks or in detecting the similarity between map and landscape features. At a neuro-anatomical level, these findings suggest an intact dorso-lateral pathway, and enhanced performance in non social tasks relying on the infero-temporal pathway.
ISSN:0028-3932
1873-3514
DOI:10.1016/j.neuropsychologia.2003.08.015