Loading…

Computational Elucidation of the Transition State Shape Selectivity Phenomenon

The most commonly cited example of a transition state shape selective reaction, m-xylene disproportionation in zeolites, is examined to determine if the local spatial environment of a reaction can significantly alter selectivity. In the studied reaction, ZPE-corrected rate limiting energy barriers a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2004-01, Vol.126 (3), p.936-947
Main Authors: Clark, Louis A, Sierka, Marek, Sauer, Joachim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The most commonly cited example of a transition state shape selective reaction, m-xylene disproportionation in zeolites, is examined to determine if the local spatial environment of a reaction can significantly alter selectivity. In the studied reaction, ZPE-corrected rate limiting energy barriers are 136 kJ/mol for the methoxide-mediated pathway and 109 to 145 kJ/mol for the diphenylmethane-mediated pathway. Both pathways are likely to contribute to selectivity and disfavor one product isomer (1,3,5-trimethylbenzene), but relative selectivity to the other two isomers varies with pore geometry, mechanistic pathway, and inclusion of entropic effects. Most importantly, study of one pathway in three different common zeolite framework types (FAU, MFI, and MOR) allows explicit and practically oriented consideration of pore shape. Variation of the environment shape at the critical transition states is thus shown to affect the course of reaction. Barrier height shifts on the order of 10−20 kJ/mol are achievable. Observed selectivities do not agree with the transition state characteristics calculated here and, hence, are most likely due to product shape selectivity. Further examination of the pathways highlights the importance of mechanistic steps that do not result in isomer-defining bonds and leads to a more robust definition of transition state shape selectivity.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0381712