Loading…

Time-course study of SCG10 mRNA levels associated with LTP induction and maintenance in the rat Schaffer-CA1 pathway in vivo

The maintenance of long-term potentiation (LTP) depends on altered gene expression. Previously, we found the expression of neuronal growth associated protein SCG10, which is involved in neurite outgrowth and neural regeneration, was up-regulated by LTP induction in the rat hippocampal Schaffer-colla...

Full description

Saved in:
Bibliographic Details
Published in:Brain research. Molecular brain research. 2004-01, Vol.120 (2), p.182-187
Main Authors: Peng, Haixiang, Derrick, Brian E., Martinez, Joe L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The maintenance of long-term potentiation (LTP) depends on altered gene expression. Previously, we found the expression of neuronal growth associated protein SCG10, which is involved in neurite outgrowth and neural regeneration, was up-regulated by LTP induction in the rat hippocampal Schaffer-collateral CA1 pathway. Here we studied the temporal expression pattern of SCG10 mRNA after LTP induction using permanently implanted electrodes in the same CA1 pathway. The real-time RT-PCR showed that both SCG10 mRNA 1 and 2 kb forms were increased at the 3 h, but not at 1 or 24 h. In situ hybridization revealed an increase of SCG10 2 kb mRNA level in ipsilateral CA3 and CA1 areas, but not their contralateral counterparts or either side of dentate gyrus. These results suggest that SCG10 may play a role in the maintenance of synaptic plasticity through a transient regulation of microtubule dynamics, which facilitates the structural remodeling of the presynaptic element during the consolidation period.
ISSN:0169-328X
1872-6941
DOI:10.1016/j.molbrainres.2003.10.009