Loading…

Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking

This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethyle...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress 2004, Vol.20 (1), p.388-392
Main Authors: Pessela, Benevides C. C., Mateo, Cesar, Fuentes, Manuel, Vian, Alejandro, García, José L., Carrascosa, Alfonso V., Guisán, José M., Fernández-Lafuente, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3
cites cdi_FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3
container_end_page 392
container_issue 1
container_start_page 388
container_title Biotechnology progress
container_volume 20
creator Pessela, Benevides C. C.
Mateo, Cesar
Fuentes, Manuel
Vian, Alejandro
García, José L.
Carrascosa, Alfonso V.
Guisán, José M.
Fernández-Lafuente, Roberto
description This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable β‐galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads‐epoxy‐chelate, Sepabeads‐epoxy‐amino, or Sepabeads‐epoxy‐boronic to 5% using Sepabeads‐epoxy‐IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized β‐galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long‐term alkaline incubation, the enzyme immobilized on Sepabeads‐epoxy‐boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS‐PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross‐linking with aldehyde‐dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 °C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.
doi_str_mv 10.1021/bp034183f
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80143779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80143779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3</originalsourceid><addsrcrecordid>eNqFkUFv0zAYhiMEYmVw4A8gX0DikGHHie0et25rJ5UxaFElLpbjfGZmThzsZLT8Is78EH4TKa02LoiTLet5H-v73iR5TvARwRl5U7aY5kRQ8yAZkSLDKcOUPkxGghcs5WMqDpInMX7BGAvMssfJAck5o4KJUfJj0anSOvtdddY3yBuk0NvedbaGYDX69TOdKqd056OtVARkgq_R8hpC3UcU2yO06IKyDVpmqNygi7r2f9sadOlvwaEZdBC86Ru9fVcOnbV-vUGLvm196CK6coPt2FVwvakgPYX1IG3QJPgY07ltbmzz-WnyyCgX4dn-PEw-np8tJ7N0_m56MTmepzrPCE0VBVwYXBJVcc0Vw0aXWI_LgpRjbnQOJYApRMEKojGtcswqQ7MSG0GpwVTRw-TVztsG_7WH2MnaRg3OqQZ8H6XAJKd8WOr_QMKFyBjJBvD1DtTbeQIY2QZbq7CRBMttf_Kuv4F9sZf2ZQ3VPbkvbABe7gEVtXJm2JO28Z4rciaKjA8c3nHfrIPNv3-UJ8urD3-uQyTdRWzsYH0XUeFGMk55IVeXU3m6_PR-Nl6t5Iz-BqKOxRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17882612</pqid></control><display><type>article</type><title>Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Pessela, Benevides C. C. ; Mateo, Cesar ; Fuentes, Manuel ; Vian, Alejandro ; García, José L. ; Carrascosa, Alfonso V. ; Guisán, José M. ; Fernández-Lafuente, Roberto</creator><creatorcontrib>Pessela, Benevides C. C. ; Mateo, Cesar ; Fuentes, Manuel ; Vian, Alejandro ; García, José L. ; Carrascosa, Alfonso V. ; Guisán, José M. ; Fernández-Lafuente, Roberto</creatorcontrib><description>This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable β‐galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads‐epoxy‐chelate, Sepabeads‐epoxy‐amino, or Sepabeads‐epoxy‐boronic to 5% using Sepabeads‐epoxy‐IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized β‐galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long‐term alkaline incubation, the enzyme immobilized on Sepabeads‐epoxy‐boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS‐PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross‐linking with aldehyde‐dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 °C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp034183f</identifier><identifier>PMID: 14763868</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Adsorption ; Aldehydes - chemistry ; beta-Galactosidase - chemistry ; Biological and medical sciences ; Biotechnology ; Dextrans - chemistry ; Dimerization ; Enzyme Activation ; Enzyme Stability ; Enzymes, Immobilized - chemistry ; Epoxy Compounds - chemistry ; Fundamental and applied biological sciences. Psychology ; Hydrolysis ; Lactose - chemistry ; Polymers - chemistry ; Protein Conformation ; Protein Structure, Quaternary ; Species Specificity ; Thermus ; Thermus - classification ; Thermus - enzymology</subject><ispartof>Biotechnology progress, 2004, Vol.20 (1), p.388-392</ispartof><rights>Copyright © 2004 American Institute of Chemical Engineers (AIChE)</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3</citedby><cites>FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15468527$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14763868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pessela, Benevides C. C.</creatorcontrib><creatorcontrib>Mateo, Cesar</creatorcontrib><creatorcontrib>Fuentes, Manuel</creatorcontrib><creatorcontrib>Vian, Alejandro</creatorcontrib><creatorcontrib>García, José L.</creatorcontrib><creatorcontrib>Carrascosa, Alfonso V.</creatorcontrib><creatorcontrib>Guisán, José M.</creatorcontrib><creatorcontrib>Fernández-Lafuente, Roberto</creatorcontrib><title>Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable β‐galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads‐epoxy‐chelate, Sepabeads‐epoxy‐amino, or Sepabeads‐epoxy‐boronic to 5% using Sepabeads‐epoxy‐IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized β‐galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long‐term alkaline incubation, the enzyme immobilized on Sepabeads‐epoxy‐boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS‐PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross‐linking with aldehyde‐dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 °C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.</description><subject>Adsorption</subject><subject>Aldehydes - chemistry</subject><subject>beta-Galactosidase - chemistry</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Dextrans - chemistry</subject><subject>Dimerization</subject><subject>Enzyme Activation</subject><subject>Enzyme Stability</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Epoxy Compounds - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrolysis</subject><subject>Lactose - chemistry</subject><subject>Polymers - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Structure, Quaternary</subject><subject>Species Specificity</subject><subject>Thermus</subject><subject>Thermus - classification</subject><subject>Thermus - enzymology</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv0zAYhiMEYmVw4A8gX0DikGHHie0et25rJ5UxaFElLpbjfGZmThzsZLT8Is78EH4TKa02LoiTLet5H-v73iR5TvARwRl5U7aY5kRQ8yAZkSLDKcOUPkxGghcs5WMqDpInMX7BGAvMssfJAck5o4KJUfJj0anSOvtdddY3yBuk0NvedbaGYDX69TOdKqd056OtVARkgq_R8hpC3UcU2yO06IKyDVpmqNygi7r2f9sadOlvwaEZdBC86Ru9fVcOnbV-vUGLvm196CK6coPt2FVwvakgPYX1IG3QJPgY07ltbmzz-WnyyCgX4dn-PEw-np8tJ7N0_m56MTmepzrPCE0VBVwYXBJVcc0Vw0aXWI_LgpRjbnQOJYApRMEKojGtcswqQ7MSG0GpwVTRw-TVztsG_7WH2MnaRg3OqQZ8H6XAJKd8WOr_QMKFyBjJBvD1DtTbeQIY2QZbq7CRBMttf_Kuv4F9sZf2ZQ3VPbkvbABe7gEVtXJm2JO28Z4rciaKjA8c3nHfrIPNv3-UJ8urD3-uQyTdRWzsYH0XUeFGMk55IVeXU3m6_PR-Nl6t5Iz-BqKOxRM</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Pessela, Benevides C. C.</creator><creator>Mateo, Cesar</creator><creator>Fuentes, Manuel</creator><creator>Vian, Alejandro</creator><creator>García, José L.</creator><creator>Carrascosa, Alfonso V.</creator><creator>Guisán, José M.</creator><creator>Fernández-Lafuente, Roberto</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking</title><author>Pessela, Benevides C. C. ; Mateo, Cesar ; Fuentes, Manuel ; Vian, Alejandro ; García, José L. ; Carrascosa, Alfonso V. ; Guisán, José M. ; Fernández-Lafuente, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adsorption</topic><topic>Aldehydes - chemistry</topic><topic>beta-Galactosidase - chemistry</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Dextrans - chemistry</topic><topic>Dimerization</topic><topic>Enzyme Activation</topic><topic>Enzyme Stability</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Epoxy Compounds - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrolysis</topic><topic>Lactose - chemistry</topic><topic>Polymers - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Structure, Quaternary</topic><topic>Species Specificity</topic><topic>Thermus</topic><topic>Thermus - classification</topic><topic>Thermus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pessela, Benevides C. C.</creatorcontrib><creatorcontrib>Mateo, Cesar</creatorcontrib><creatorcontrib>Fuentes, Manuel</creatorcontrib><creatorcontrib>Vian, Alejandro</creatorcontrib><creatorcontrib>García, José L.</creatorcontrib><creatorcontrib>Carrascosa, Alfonso V.</creatorcontrib><creatorcontrib>Guisán, José M.</creatorcontrib><creatorcontrib>Fernández-Lafuente, Roberto</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pessela, Benevides C. C.</au><au>Mateo, Cesar</au><au>Fuentes, Manuel</au><au>Vian, Alejandro</au><au>García, José L.</au><au>Carrascosa, Alfonso V.</au><au>Guisán, José M.</au><au>Fernández-Lafuente, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2004</date><risdate>2004</risdate><volume>20</volume><issue>1</issue><spage>388</spage><epage>392</epage><pages>388-392</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable β‐galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads‐epoxy‐chelate, Sepabeads‐epoxy‐amino, or Sepabeads‐epoxy‐boronic to 5% using Sepabeads‐epoxy‐IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized β‐galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long‐term alkaline incubation, the enzyme immobilized on Sepabeads‐epoxy‐boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS‐PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross‐linking with aldehyde‐dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 °C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>14763868</pmid><doi>10.1021/bp034183f</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2004, Vol.20 (1), p.388-392
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_80143779
source Wiley-Blackwell Read & Publish Collection
subjects Adsorption
Aldehydes - chemistry
beta-Galactosidase - chemistry
Biological and medical sciences
Biotechnology
Dextrans - chemistry
Dimerization
Enzyme Activation
Enzyme Stability
Enzymes, Immobilized - chemistry
Epoxy Compounds - chemistry
Fundamental and applied biological sciences. Psychology
Hydrolysis
Lactose - chemistry
Polymers - chemistry
Protein Conformation
Protein Structure, Quaternary
Species Specificity
Thermus
Thermus - classification
Thermus - enzymology
title Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20a%20Multimeric%20%CE%B2-Galactosidase%20from%20Thermus%20sp.%20Strain%20T2%20by%20Immobilization%20on%20Novel%20Heterofunctional%20Epoxy%20Supports%20Plus%20Aldehyde-Dextran%20Cross-Linking&rft.jtitle=Biotechnology%20progress&rft.au=Pessela,%20Benevides%20C.%20C.&rft.date=2004&rft.volume=20&rft.issue=1&rft.spage=388&rft.epage=392&rft.pages=388-392&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp034183f&rft_dat=%3Cproquest_cross%3E80143779%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17882612&rft_id=info:pmid/14763868&rfr_iscdi=true