Loading…
Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking
This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethyle...
Saved in:
Published in: | Biotechnology progress 2004, Vol.20 (1), p.388-392 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3 |
container_end_page | 392 |
container_issue | 1 |
container_start_page | 388 |
container_title | Biotechnology progress |
container_volume | 20 |
creator | Pessela, Benevides C. C. Mateo, Cesar Fuentes, Manuel Vian, Alejandro García, José L. Carrascosa, Alfonso V. Guisán, José M. Fernández-Lafuente, Roberto |
description | This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable β‐galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads‐epoxy‐chelate, Sepabeads‐epoxy‐amino, or Sepabeads‐epoxy‐boronic to 5% using Sepabeads‐epoxy‐IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized β‐galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long‐term alkaline incubation, the enzyme immobilized on Sepabeads‐epoxy‐boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS‐PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross‐linking with aldehyde‐dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 °C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits. |
doi_str_mv | 10.1021/bp034183f |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80143779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80143779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3</originalsourceid><addsrcrecordid>eNqFkUFv0zAYhiMEYmVw4A8gX0DikGHHie0et25rJ5UxaFElLpbjfGZmThzsZLT8Is78EH4TKa02LoiTLet5H-v73iR5TvARwRl5U7aY5kRQ8yAZkSLDKcOUPkxGghcs5WMqDpInMX7BGAvMssfJAck5o4KJUfJj0anSOvtdddY3yBuk0NvedbaGYDX69TOdKqd056OtVARkgq_R8hpC3UcU2yO06IKyDVpmqNygi7r2f9sadOlvwaEZdBC86Ru9fVcOnbV-vUGLvm196CK6coPt2FVwvakgPYX1IG3QJPgY07ltbmzz-WnyyCgX4dn-PEw-np8tJ7N0_m56MTmepzrPCE0VBVwYXBJVcc0Vw0aXWI_LgpRjbnQOJYApRMEKojGtcswqQ7MSG0GpwVTRw-TVztsG_7WH2MnaRg3OqQZ8H6XAJKd8WOr_QMKFyBjJBvD1DtTbeQIY2QZbq7CRBMttf_Kuv4F9sZf2ZQ3VPbkvbABe7gEVtXJm2JO28Z4rciaKjA8c3nHfrIPNv3-UJ8urD3-uQyTdRWzsYH0XUeFGMk55IVeXU3m6_PR-Nl6t5Iz-BqKOxRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17882612</pqid></control><display><type>article</type><title>Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Pessela, Benevides C. C. ; Mateo, Cesar ; Fuentes, Manuel ; Vian, Alejandro ; García, José L. ; Carrascosa, Alfonso V. ; Guisán, José M. ; Fernández-Lafuente, Roberto</creator><creatorcontrib>Pessela, Benevides C. C. ; Mateo, Cesar ; Fuentes, Manuel ; Vian, Alejandro ; García, José L. ; Carrascosa, Alfonso V. ; Guisán, José M. ; Fernández-Lafuente, Roberto</creatorcontrib><description>This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable β‐galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads‐epoxy‐chelate, Sepabeads‐epoxy‐amino, or Sepabeads‐epoxy‐boronic to 5% using Sepabeads‐epoxy‐IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized β‐galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long‐term alkaline incubation, the enzyme immobilized on Sepabeads‐epoxy‐boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS‐PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross‐linking with aldehyde‐dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 °C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp034183f</identifier><identifier>PMID: 14763868</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Adsorption ; Aldehydes - chemistry ; beta-Galactosidase - chemistry ; Biological and medical sciences ; Biotechnology ; Dextrans - chemistry ; Dimerization ; Enzyme Activation ; Enzyme Stability ; Enzymes, Immobilized - chemistry ; Epoxy Compounds - chemistry ; Fundamental and applied biological sciences. Psychology ; Hydrolysis ; Lactose - chemistry ; Polymers - chemistry ; Protein Conformation ; Protein Structure, Quaternary ; Species Specificity ; Thermus ; Thermus - classification ; Thermus - enzymology</subject><ispartof>Biotechnology progress, 2004, Vol.20 (1), p.388-392</ispartof><rights>Copyright © 2004 American Institute of Chemical Engineers (AIChE)</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3</citedby><cites>FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15468527$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14763868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pessela, Benevides C. C.</creatorcontrib><creatorcontrib>Mateo, Cesar</creatorcontrib><creatorcontrib>Fuentes, Manuel</creatorcontrib><creatorcontrib>Vian, Alejandro</creatorcontrib><creatorcontrib>García, José L.</creatorcontrib><creatorcontrib>Carrascosa, Alfonso V.</creatorcontrib><creatorcontrib>Guisán, José M.</creatorcontrib><creatorcontrib>Fernández-Lafuente, Roberto</creatorcontrib><title>Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable β‐galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads‐epoxy‐chelate, Sepabeads‐epoxy‐amino, or Sepabeads‐epoxy‐boronic to 5% using Sepabeads‐epoxy‐IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized β‐galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long‐term alkaline incubation, the enzyme immobilized on Sepabeads‐epoxy‐boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS‐PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross‐linking with aldehyde‐dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 °C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.</description><subject>Adsorption</subject><subject>Aldehydes - chemistry</subject><subject>beta-Galactosidase - chemistry</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Dextrans - chemistry</subject><subject>Dimerization</subject><subject>Enzyme Activation</subject><subject>Enzyme Stability</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Epoxy Compounds - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrolysis</subject><subject>Lactose - chemistry</subject><subject>Polymers - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Structure, Quaternary</subject><subject>Species Specificity</subject><subject>Thermus</subject><subject>Thermus - classification</subject><subject>Thermus - enzymology</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv0zAYhiMEYmVw4A8gX0DikGHHie0et25rJ5UxaFElLpbjfGZmThzsZLT8Is78EH4TKa02LoiTLet5H-v73iR5TvARwRl5U7aY5kRQ8yAZkSLDKcOUPkxGghcs5WMqDpInMX7BGAvMssfJAck5o4KJUfJj0anSOvtdddY3yBuk0NvedbaGYDX69TOdKqd056OtVARkgq_R8hpC3UcU2yO06IKyDVpmqNygi7r2f9sadOlvwaEZdBC86Ru9fVcOnbV-vUGLvm196CK6coPt2FVwvakgPYX1IG3QJPgY07ltbmzz-WnyyCgX4dn-PEw-np8tJ7N0_m56MTmepzrPCE0VBVwYXBJVcc0Vw0aXWI_LgpRjbnQOJYApRMEKojGtcswqQ7MSG0GpwVTRw-TVztsG_7WH2MnaRg3OqQZ8H6XAJKd8WOr_QMKFyBjJBvD1DtTbeQIY2QZbq7CRBMttf_Kuv4F9sZf2ZQ3VPbkvbABe7gEVtXJm2JO28Z4rciaKjA8c3nHfrIPNv3-UJ8urD3-uQyTdRWzsYH0XUeFGMk55IVeXU3m6_PR-Nl6t5Iz-BqKOxRM</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Pessela, Benevides C. C.</creator><creator>Mateo, Cesar</creator><creator>Fuentes, Manuel</creator><creator>Vian, Alejandro</creator><creator>García, José L.</creator><creator>Carrascosa, Alfonso V.</creator><creator>Guisán, José M.</creator><creator>Fernández-Lafuente, Roberto</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking</title><author>Pessela, Benevides C. C. ; Mateo, Cesar ; Fuentes, Manuel ; Vian, Alejandro ; García, José L. ; Carrascosa, Alfonso V. ; Guisán, José M. ; Fernández-Lafuente, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adsorption</topic><topic>Aldehydes - chemistry</topic><topic>beta-Galactosidase - chemistry</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Dextrans - chemistry</topic><topic>Dimerization</topic><topic>Enzyme Activation</topic><topic>Enzyme Stability</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Epoxy Compounds - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrolysis</topic><topic>Lactose - chemistry</topic><topic>Polymers - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Structure, Quaternary</topic><topic>Species Specificity</topic><topic>Thermus</topic><topic>Thermus - classification</topic><topic>Thermus - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pessela, Benevides C. C.</creatorcontrib><creatorcontrib>Mateo, Cesar</creatorcontrib><creatorcontrib>Fuentes, Manuel</creatorcontrib><creatorcontrib>Vian, Alejandro</creatorcontrib><creatorcontrib>García, José L.</creatorcontrib><creatorcontrib>Carrascosa, Alfonso V.</creatorcontrib><creatorcontrib>Guisán, José M.</creatorcontrib><creatorcontrib>Fernández-Lafuente, Roberto</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pessela, Benevides C. C.</au><au>Mateo, Cesar</au><au>Fuentes, Manuel</au><au>Vian, Alejandro</au><au>García, José L.</au><au>Carrascosa, Alfonso V.</au><au>Guisán, José M.</au><au>Fernández-Lafuente, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2004</date><risdate>2004</risdate><volume>20</volume><issue>1</issue><spage>388</spage><epage>392</epage><pages>388-392</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads‐epoxy support with other Sepabeads‐epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable β‐galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads‐epoxy‐chelate, Sepabeads‐epoxy‐amino, or Sepabeads‐epoxy‐boronic to 5% using Sepabeads‐epoxy‐IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized β‐galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long‐term alkaline incubation, the enzyme immobilized on Sepabeads‐epoxy‐boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS‐PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross‐linking with aldehyde‐dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 °C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>14763868</pmid><doi>10.1021/bp034183f</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2004, Vol.20 (1), p.388-392 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_80143779 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adsorption Aldehydes - chemistry beta-Galactosidase - chemistry Biological and medical sciences Biotechnology Dextrans - chemistry Dimerization Enzyme Activation Enzyme Stability Enzymes, Immobilized - chemistry Epoxy Compounds - chemistry Fundamental and applied biological sciences. Psychology Hydrolysis Lactose - chemistry Polymers - chemistry Protein Conformation Protein Structure, Quaternary Species Specificity Thermus Thermus - classification Thermus - enzymology |
title | Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20of%20a%20Multimeric%20%CE%B2-Galactosidase%20from%20Thermus%20sp.%20Strain%20T2%20by%20Immobilization%20on%20Novel%20Heterofunctional%20Epoxy%20Supports%20Plus%20Aldehyde-Dextran%20Cross-Linking&rft.jtitle=Biotechnology%20progress&rft.au=Pessela,%20Benevides%20C.%20C.&rft.date=2004&rft.volume=20&rft.issue=1&rft.spage=388&rft.epage=392&rft.pages=388-392&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp034183f&rft_dat=%3Cproquest_cross%3E80143779%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4213-a3e05f0b1ad7c7a60fcb0c9b51b97fc4ebeef585651c03d406df32b0f833f03a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17882612&rft_id=info:pmid/14763868&rfr_iscdi=true |