Loading…
Functional genomics as an emerging strategy for the investigation of central mechanisms in experimental hypertension
Centrally mediated increases in sympathetic nerve activity and attenuated arterial baroreflexes contribute to the pathogenesis of hypertension. Despite the characterization of cellular and physiological mechanisms that regulate blood pressure and alterations that contribute to hypertension, the gene...
Saved in:
Published in: | Progress in Biophysics and Molecular Biology 2004-02, Vol.84 (2), p.107-123 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Centrally mediated increases in sympathetic nerve activity and attenuated arterial baroreflexes contribute to the pathogenesis of hypertension. Despite the characterization of cellular and physiological mechanisms that regulate blood pressure and alterations that contribute to hypertension, the genetic and molecular basis of this pathophysiology remains poorly understood. Strategies to identify genes that contribute to central pathophysiologic mechanisms in hypertension include integrative biochemistry and physiology as well as functional genomics. This article summarizes recent progress in applying functional genomics to elucidate the genetic basis of altered central blood pressure regulatory mechanisms in hypertension. We describe approaches others and we have undertaken to investigate gene expression profiles in hypertensive models in order to identify genes that contribute to the pathogenesis of hypertension. Finally, we provide the readers a roadmap for negotiating the route from experimental findings of gene expression profiling to translating their therapeutic potential. The combination of gene expression profiling and the phenotypic characterization of in vitro and in vivo loss or gain of function experiments for candidate genes have the potential to identify genes involved in the pathogenesis of hypertension and may present novel targets for therapy. |
---|---|
ISSN: | 0079-6107 1873-1732 |
DOI: | 10.1016/j.pbiomolbio.2003.11.007 |