Loading…
Design, Synthesis, and Biological Evaluation of Doxorubicin−Formaldehyde Conjugates Targeted to Breast Cancer Cells
The anthracycline antitumor drug doxorubicin (DOX) has been utilized for decades as a broad-spectrum chemotherapeutic. Recent literature evidence documents the role of formaldehyde in the cytotoxic mechanism, and anthracycline−formaldehyde conjugates possess substantially enhanced activity in vitro...
Saved in:
Published in: | Journal of medicinal chemistry 2004-02, Vol.47 (5), p.1193-1206 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The anthracycline antitumor drug doxorubicin (DOX) has been utilized for decades as a broad-spectrum chemotherapeutic. Recent literature evidence documents the role of formaldehyde in the cytotoxic mechanism, and anthracycline−formaldehyde conjugates possess substantially enhanced activity in vitro and in vivo. Targeting a doxorubicin−formaldehyde conjugate specifically to cancer cells may provide a more efficacious chemotherapeutic. The design and 11-step synthesis of doxorubicin−formaldehyde conjugates targeted to the estrogen receptor, which is commonly overexpressed in breast cancer cells, are reported. The formaldehyde is incorporated in a masked form as an N-Mannich linkage between doxorubicin and salicylamide. The salicylamide triggering molecule, previously developed to release the doxorubicin−formaldehyde active metabolite, is tethered via derivatized ethylene glycols to an E and Z mixture of 4-hydroxytamoxifen. The targeting group, E/Z-4-hydroxytamoxifen, was selected for its ability to tightly bind the estrogen receptor and antiestrogen binding sites. The targeted doxorubicin−formaldehyde conjugates' estrogen receptor binding and in vitro growth inhibition were evaluated as a function of tether length. The lead compound, DOX-TEG-TAM, bearing a triethylene glycol tether, binds the estrogen receptor with a binding affinity of 2.5% relative to E/Z-4-hydroxytamoxifen and inhibits the growth of four breast cancer cell lines with 4-fold up to 140-fold enhanced activity relative to doxorubicin. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/jm030352r |