Loading…
Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti–6Al–4V composite coatings in simulated body fluid
Hydroxyapatite (HA)/yttria stabilized zirconia/Ti–6Al–4V bio-composite coatings deposited onto Ti–6Al–4V substrate through a plasma spray technique were immersed in simulated body fluid (SBF) to investigate their behavior in vitro. Surface morphologies and structural changes in the coatings were ana...
Saved in:
Published in: | Biomaterials 2004-07, Vol.25 (16), p.3177-3185 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydroxyapatite (HA)/yttria stabilized zirconia/Ti–6Al–4V bio-composite coatings deposited onto Ti–6Al–4V substrate through a plasma spray technique were immersed in simulated body fluid (SBF) to investigate their behavior in vitro. Surface morphologies and structural changes in the coatings were analyzed by scanning electron microscopy, thin-film X-ray diffractometer, and X-ray photoelectron spectroscopy. The tensile bond strength of the coatings after immersion was also conducted through the ASTM C-633 standard for thermal sprayed coatings. Results showed that carbonate-containing hydroxyapatite (CHA) layer formed on the surface of composite coatings after 4 weeks immersion in SBF solution, indicating the composite coating possessed excellent bioactivity. The mechanical properties were found to decrease with immersion duration of maximum 56 days. However, minimal variation in mechanical properties was found subsequent to achieving supersaturation of the calcium ions, which was attained with the precipitation of the calcium phosphate layers. The mechanical properties of the composite coating were found to be significantly higher than those of pure HA coatings even after immersion in the SBF solution, indicating the enhanced mechanical properties of the composite coatings. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2003.09.101 |