Loading…

Glass–Rubber Transitions of Cellulosic Polymers by Dynamic Mechanical Analysis

The glass–rubber transition temperatures (Tg) of several cellulosic polymers [hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC)] have been examined using dynamic mechanical analysis (DMA). The melting temperatures of the above polymers were examined us...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical sciences 1990-09, Vol.79 (9), p.845-848
Main Authors: Kararli, Tugrul T., Hurlbut, Jeffrey B., Needham, Thomas E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4572-42ea13ad6a4ee9e5f803219727db71ce85c3d04ce28df2e366a0736749be39c13
cites cdi_FETCH-LOGICAL-c4572-42ea13ad6a4ee9e5f803219727db71ce85c3d04ce28df2e366a0736749be39c13
container_end_page 848
container_issue 9
container_start_page 845
container_title Journal of pharmaceutical sciences
container_volume 79
creator Kararli, Tugrul T.
Hurlbut, Jeffrey B.
Needham, Thomas E.
description The glass–rubber transition temperatures (Tg) of several cellulosic polymers [hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC)] have been examined using dynamic mechanical analysis (DMA). The melting temperatures of the above polymers were examined using a hot stage melting point apparatus. The primary Tg of three different grades of HPMC (3, 6, and 15 cps) were determined to be 160, 170, and 175°C, respectively. The primary Tg of the HEC film was determined as 120°C. The HPC film did not indicate a primary Tg. These cellulosic polymers also displayed secondary transitions. Hot stage melting of HPMC and HPC was observed at 225 to 254°C and 190 to 195°C, respectively. The HEC powder did not exhibit a melting temperature, but became darker at temperatures >150°C.
doi_str_mv 10.1002/jps.2600790922
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80213089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002235491548339X</els_id><sourcerecordid>80213089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4572-42ea13ad6a4ee9e5f803219727db71ce85c3d04ce28df2e366a0736749be39c13</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EKtvClRtSLnDL4q_Y8bFsYWFVygoKHC3HmQiXfCyeTSE3_gP_kF-CUVatOCBOlmaedzzzEPKI0SWjlD-72uGSK0q1oYbzO2TBCk5zRZm-SxYJ4LkopLlPjhGvKKWKFsUROeJcC6nFgmzXrUP89ePnu7GqIGaX0fUY9mHoMRuabAVtO7YDBp9th3bqIGJWTdnZ1Lsu1d6A_-z64F2bnfaunTDgA3KvcS3Cw8N7Qj68fHG5epWfv12_Xp2e514WmueSg2PC1cpJAANFU1LBmdFc15VmHsrCi5pKD7ysGw5CKUe1UFqaCoTxTJyQp_PcXRy-joB72wX0aV3XwzCiLSlngpYmgcsZ9HFAjNDYXQydi5Nl1P5RaJNCe6swBR4fJo9VB_UNfnCW-k8OfYfp8iYZ8wFvpxrJSqXLxJmZ-xZamP7zq91s3_-1Qz5nA-7h-03WxS9WaaEL--libTcfzy6ey83GysSXMw9J-XWAaNEH6D3UIYLf23oI_zr3N1tfrMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80213089</pqid></control><display><type>article</type><title>Glass–Rubber Transitions of Cellulosic Polymers by Dynamic Mechanical Analysis</title><source>Wiley Online Library</source><creator>Kararli, Tugrul T. ; Hurlbut, Jeffrey B. ; Needham, Thomas E.</creator><creatorcontrib>Kararli, Tugrul T. ; Hurlbut, Jeffrey B. ; Needham, Thomas E.</creatorcontrib><description>The glass–rubber transition temperatures (Tg) of several cellulosic polymers [hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC)] have been examined using dynamic mechanical analysis (DMA). The melting temperatures of the above polymers were examined using a hot stage melting point apparatus. The primary Tg of three different grades of HPMC (3, 6, and 15 cps) were determined to be 160, 170, and 175°C, respectively. The primary Tg of the HEC film was determined as 120°C. The HPC film did not indicate a primary Tg. These cellulosic polymers also displayed secondary transitions. Hot stage melting of HPMC and HPC was observed at 225 to 254°C and 190 to 195°C, respectively. The HEC powder did not exhibit a melting temperature, but became darker at temperatures &gt;150°C.</description><identifier>ISSN: 0022-3549</identifier><identifier>EISSN: 1520-6017</identifier><identifier>DOI: 10.1002/jps.2600790922</identifier><identifier>PMID: 2273473</identifier><identifier>CODEN: JPMSAE</identifier><language>eng</language><publisher>Washington: Elsevier Inc</publisher><subject>Applied sciences ; Cellulose - analogs &amp; derivatives ; Cellulose - chemistry ; Cellulose and derivatives ; Chemical Phenomena ; Chemistry, Physical ; Exact sciences and technology ; Glass ; Hypromellose Derivatives ; Methylcellulose - analogs &amp; derivatives ; Natural polymers ; Physicochemistry of polymers ; Polymers - chemistry ; Rubber ; Temperature</subject><ispartof>Journal of pharmaceutical sciences, 1990-09, Vol.79 (9), p.845-848</ispartof><rights>1990 Wiley-Liss, Inc., A Wiley Company</rights><rights>Copyright © 1990 Wiley‐Liss, Inc., A Wiley Company</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4572-42ea13ad6a4ee9e5f803219727db71ce85c3d04ce28df2e366a0736749be39c13</citedby><cites>FETCH-LOGICAL-c4572-42ea13ad6a4ee9e5f803219727db71ce85c3d04ce28df2e366a0736749be39c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjps.2600790922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjps.2600790922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19418678$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2273473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kararli, Tugrul T.</creatorcontrib><creatorcontrib>Hurlbut, Jeffrey B.</creatorcontrib><creatorcontrib>Needham, Thomas E.</creatorcontrib><title>Glass–Rubber Transitions of Cellulosic Polymers by Dynamic Mechanical Analysis</title><title>Journal of pharmaceutical sciences</title><addtitle>J. Pharm. Sci</addtitle><description>The glass–rubber transition temperatures (Tg) of several cellulosic polymers [hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC)] have been examined using dynamic mechanical analysis (DMA). The melting temperatures of the above polymers were examined using a hot stage melting point apparatus. The primary Tg of three different grades of HPMC (3, 6, and 15 cps) were determined to be 160, 170, and 175°C, respectively. The primary Tg of the HEC film was determined as 120°C. The HPC film did not indicate a primary Tg. These cellulosic polymers also displayed secondary transitions. Hot stage melting of HPMC and HPC was observed at 225 to 254°C and 190 to 195°C, respectively. The HEC powder did not exhibit a melting temperature, but became darker at temperatures &gt;150°C.</description><subject>Applied sciences</subject><subject>Cellulose - analogs &amp; derivatives</subject><subject>Cellulose - chemistry</subject><subject>Cellulose and derivatives</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Exact sciences and technology</subject><subject>Glass</subject><subject>Hypromellose Derivatives</subject><subject>Methylcellulose - analogs &amp; derivatives</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers - chemistry</subject><subject>Rubber</subject><subject>Temperature</subject><issn>0022-3549</issn><issn>1520-6017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EKtvClRtSLnDL4q_Y8bFsYWFVygoKHC3HmQiXfCyeTSE3_gP_kF-CUVatOCBOlmaedzzzEPKI0SWjlD-72uGSK0q1oYbzO2TBCk5zRZm-SxYJ4LkopLlPjhGvKKWKFsUROeJcC6nFgmzXrUP89ePnu7GqIGaX0fUY9mHoMRuabAVtO7YDBp9th3bqIGJWTdnZ1Lsu1d6A_-z64F2bnfaunTDgA3KvcS3Cw8N7Qj68fHG5epWfv12_Xp2e514WmueSg2PC1cpJAANFU1LBmdFc15VmHsrCi5pKD7ysGw5CKUe1UFqaCoTxTJyQp_PcXRy-joB72wX0aV3XwzCiLSlngpYmgcsZ9HFAjNDYXQydi5Nl1P5RaJNCe6swBR4fJo9VB_UNfnCW-k8OfYfp8iYZ8wFvpxrJSqXLxJmZ-xZamP7zq91s3_-1Qz5nA-7h-03WxS9WaaEL--libTcfzy6ey83GysSXMw9J-XWAaNEH6D3UIYLf23oI_zr3N1tfrMY</recordid><startdate>199009</startdate><enddate>199009</enddate><creator>Kararli, Tugrul T.</creator><creator>Hurlbut, Jeffrey B.</creator><creator>Needham, Thomas E.</creator><general>Elsevier Inc</general><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Pharmaceutical Association</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199009</creationdate><title>Glass–Rubber Transitions of Cellulosic Polymers by Dynamic Mechanical Analysis</title><author>Kararli, Tugrul T. ; Hurlbut, Jeffrey B. ; Needham, Thomas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4572-42ea13ad6a4ee9e5f803219727db71ce85c3d04ce28df2e366a0736749be39c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Cellulose - analogs &amp; derivatives</topic><topic>Cellulose - chemistry</topic><topic>Cellulose and derivatives</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Exact sciences and technology</topic><topic>Glass</topic><topic>Hypromellose Derivatives</topic><topic>Methylcellulose - analogs &amp; derivatives</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers - chemistry</topic><topic>Rubber</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kararli, Tugrul T.</creatorcontrib><creatorcontrib>Hurlbut, Jeffrey B.</creatorcontrib><creatorcontrib>Needham, Thomas E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kararli, Tugrul T.</au><au>Hurlbut, Jeffrey B.</au><au>Needham, Thomas E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glass–Rubber Transitions of Cellulosic Polymers by Dynamic Mechanical Analysis</atitle><jtitle>Journal of pharmaceutical sciences</jtitle><addtitle>J. Pharm. Sci</addtitle><date>1990-09</date><risdate>1990</risdate><volume>79</volume><issue>9</issue><spage>845</spage><epage>848</epage><pages>845-848</pages><issn>0022-3549</issn><eissn>1520-6017</eissn><coden>JPMSAE</coden><abstract>The glass–rubber transition temperatures (Tg) of several cellulosic polymers [hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC)] have been examined using dynamic mechanical analysis (DMA). The melting temperatures of the above polymers were examined using a hot stage melting point apparatus. The primary Tg of three different grades of HPMC (3, 6, and 15 cps) were determined to be 160, 170, and 175°C, respectively. The primary Tg of the HEC film was determined as 120°C. The HPC film did not indicate a primary Tg. These cellulosic polymers also displayed secondary transitions. Hot stage melting of HPMC and HPC was observed at 225 to 254°C and 190 to 195°C, respectively. The HEC powder did not exhibit a melting temperature, but became darker at temperatures &gt;150°C.</abstract><cop>Washington</cop><pub>Elsevier Inc</pub><pmid>2273473</pmid><doi>10.1002/jps.2600790922</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3549
ispartof Journal of pharmaceutical sciences, 1990-09, Vol.79 (9), p.845-848
issn 0022-3549
1520-6017
language eng
recordid cdi_proquest_miscellaneous_80213089
source Wiley Online Library
subjects Applied sciences
Cellulose - analogs & derivatives
Cellulose - chemistry
Cellulose and derivatives
Chemical Phenomena
Chemistry, Physical
Exact sciences and technology
Glass
Hypromellose Derivatives
Methylcellulose - analogs & derivatives
Natural polymers
Physicochemistry of polymers
Polymers - chemistry
Rubber
Temperature
title Glass–Rubber Transitions of Cellulosic Polymers by Dynamic Mechanical Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glass%E2%80%93Rubber%20Transitions%20of%20Cellulosic%20Polymers%20by%20Dynamic%20Mechanical%20Analysis&rft.jtitle=Journal%20of%20pharmaceutical%20sciences&rft.au=Kararli,%20Tugrul%20T.&rft.date=1990-09&rft.volume=79&rft.issue=9&rft.spage=845&rft.epage=848&rft.pages=845-848&rft.issn=0022-3549&rft.eissn=1520-6017&rft.coden=JPMSAE&rft_id=info:doi/10.1002/jps.2600790922&rft_dat=%3Cproquest_cross%3E80213089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4572-42ea13ad6a4ee9e5f803219727db71ce85c3d04ce28df2e366a0736749be39c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=80213089&rft_id=info:pmid/2273473&rfr_iscdi=true