Loading…

The primary structure of the alcohol dehydrogenase gene from the fission yeast Schizosaccharomyces pombe

We have cloned and sequenced the alcohol dehydrogenase gene of the fission yeast Schizosaccharomyces pombe. The gene was isolated by transformation and complementation of a Saccharomyces cerevisiae strain which lacked functional alcohol dehydrogenase with an S. pombe gene bank constructed in the aut...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1983-01, Vol.258 (1), p.143-149
Main Authors: Russell, P R, Hall, B D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have cloned and sequenced the alcohol dehydrogenase gene of the fission yeast Schizosaccharomyces pombe. The gene was isolated by transformation and complementation of a Saccharomyces cerevisiae strain which lacked functional alcohol dehydrogenase with an S. pombe gene bank constructed in the autonomously replicating yeast plasmid YEp13. Southern hybridization analysis indicates that S. pombe contains only one alcohol dehydrogenase gene. The structural region of the gene is 50% homologous to the alcohol dehydrogenase encoding genes of the budding yeast S. cerevisiae. The gene exhibits a very strong codon usage bias; with the set of predominantly used codons generally resembling that which S. cerevisiae employs preferentially. All of the differences in codon usage bias between S. pombe and S. cerevisiae are in the direction of greater G + C content in S. pombe codons. It is argued that this observation supports the hypothesis that selection toward uniform codon-anticodon binding energies contributes to codon usage bias and that the optimum binding energy is, on the average, higher in S. pombe than S. cerevisiae.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)33232-0