Loading…

Effect of External Force on Relaxation Kinetics in Single Frog Atrial Cardiac Cells

The effects of external force on relaxation kinetics were investigated in isolated single frog (Rana catesbeiana) atrial cells. We found that force decay occurred at a maximum and constant rate for a significant portion of auxotonic relaxation, and this rate was linearly related to the peak force de...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 1983-02, Vol.52 (2), p.161-169
Main Authors: Tarr, Merrill, Trank, John W, Goertz, Kenneth K
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of external force on relaxation kinetics were investigated in isolated single frog (Rana catesbeiana) atrial cells. We found that force decay occurred at a maximum and constant rate for a significant portion of auxotonic relaxation, and this rate was linearly related to the peak force developed during auxotonic contraction. The slope of the linear relationship between the maximum rate of auxotonic force decay and peak auxotonic force was not affected by changes in the level of contractile activation produced by activating the cell with different stimulus durations. The rate of force change during auxotonic contraction and relaxation in the isolated cell is directly related to the average sarcomere velocity within the cell. Thus, the results indicate that during auxotonic relaxation the velocity of sarcomere extension is directly related to the peak auxotonic force, and sarcomere extension, during relaxation, is therefore affected by external force. The direct effect of external force on relaxation kinetics was confirmed by the observation that force changes imposed on the cell during relaxation immediately altered the velocity of the extending cell from any given length. However, data are also presented which demonstrate that rapid sarcomere extension occurs during relaxation under conditions where external forces are negligible. Thus, rapid sarcomere extension during relaxation does not require large external forces, and internal forces must play a role in sarcomere extension during relaxation. An explanation is given for these apparently contradictory results.
ISSN:0009-7330
1524-4571
DOI:10.1161/01.RES.52.2.161