Loading…
Environmental Effects on Primary Radical Formation in Guanine: Solid-State ESR and ENDOR of Guanine Hydrobromide Monohydrate
Single crystals of guanine hydrobromide monohydrate, in which the guanine base is protonated at N7, were X-irradiated at 8 and 65 K. Using K-band ESR, ENDOR, and field-swept-ENDOR (FSE) techniques, the crystals were studied between 8 K and room temperature. There was evidence for five different radi...
Saved in:
Published in: | Radiation research 1991-02, Vol.125 (2), p.119-128 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Single crystals of guanine hydrobromide monohydrate, in which the guanine base is protonated at N7, were X-irradiated at 8 and 65 K. Using K-band ESR, ENDOR, and field-swept-ENDOR (FSE) techniques, the crystals were studied between 8 K and room temperature. There was evidence for five different radicals, RI-RV, immediately following irradiation at 8 or 65 K. RI was identified as the O6-protonated anion. It decayed near room temperature with no detectible successor. RII was identified as the N7-deprotonated cation, and decayed near 130 K. RIII is thought to be a ring-opened product formed by C8-N9 bond rupture; upon warming, it decayed at 150 K. RIV is the well-known C8 H-addition radical. These four radicals have been observed previously in the hydrochloride salt of guanine monohydrate. RV is novel, however, with magnetic characteristics consistent with those of the product formed by net OH addition to C5 of the unsaturated C4-C5 bond. It is characterized by four α-proton couplings indicating π-electron spin as follows: 13% at C8; 11% at N7; and 12% at N10. RV decayed between 240 and 255 K with no detectable successor. Upon further warming, very weak resonance lines due to additional, unidentified radicals were observed. A comparison of these results with those obtained from other systems containing N7-protonated guanine bases demonstrates the effect of the environment on the primary radical formation. |
---|---|
ISSN: | 0033-7587 1938-5404 |
DOI: | 10.2307/3577878 |