Loading…
2',5'-Oligoadenylates and related 2',5'-oligonucleotide analogs. 2. Effect on cellular proliferation, protein synthesis, and endoribonuclease activity
A number of the new enzymatically synthesized 2',5'-oligonucleotide trimers, namely, those containing the nucleosides 8-azaadenosine, toyocamycin, sangivamycin, formycin, 8-bromoadenosine, tubercidin, and guanosine, were found to inhibit protein synthesis and cellular proliferation after u...
Saved in:
Published in: | Biochemistry (Easton) 1983-04, Vol.22 (9), p.2127-2135 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A number of the new enzymatically synthesized 2',5'-oligonucleotide trimers, namely, those containing the nucleosides 8-azaadenosine, toyocamycin, sangivamycin, formycin, 8-bromoadenosine, tubercidin, and guanosine, were found to inhibit protein synthesis and cellular proliferation after uptake into intact L and HeLa cells. 2',5'-Oligonucleotide trimers containing cytidine, inosine, uridine, and 1,N6-ethenoadenosine had some effect while those containing 2-chloroadenosine, 3-ribosyladenine, ribavirin, and 2-beta-D-ribofuranosylthiazole-4-carboxamide had no detectable effect on protein synthesis or cellular proliferation after uptake into L or HeLa cells. All of these 2',5'-oligonucleotide analogues inhibited protein synthesis in the in vitro rabbit reticulocyte lysate system except for the trimer containing ribavirin. Such nucleoside substitutions have further defined the substrate-specificity requirements for the endoribonuclease and/or the inhibitors for the 2',5'-phosphodiesterase. Most of the 2',5'-analogues were degraded in L-cell extracts so the endogenous nucleases are not very specific. The 2',5'-trimers containing tubercidin and 2-beta-D-ribofuranosylthiazole-4-carboxamide were quite stable in comparison to the 2',5'-A trimer. The inhibition of protein synthesis and cellular proliferation observed correlated well with the degradation of rRNA and polyadenylated mRNA observed after uptake of the 2',5'-analogues into intact L cells. The degradation of the polyadenylated mRNA appeared to be a more sensitive test than inhibition of cellular protein synthesis for determining biological activities of the 2',5'-oligonucleotide analogues. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00278a012 |