Loading…

EPR characterization of an oxygen-evolving photosystem II preparation from the transformable cyanobacterium Synechocystis 6803

The transformable cyanobacterium Synechocystis 6803 has a photosynthetic apparatus that is similar to that of plants. Because of the ease with which this organism can be genetically manipulated and isotopically labeled, Synechocystis has been used extensively in recent studies of electron transfer i...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1991-04, Vol.30 (16), p.3943-3950
Main Authors: Noren, George H, Boerner, Renee J, Barry, Bridgette A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The transformable cyanobacterium Synechocystis 6803 has a photosynthetic apparatus that is similar to that of plants. Because of the ease with which this organism can be genetically manipulated and isotopically labeled, Synechocystis has been used extensively in recent studies of electron transfer in the water-splitting complex, photosystem II. Here, we present the first EPR characterization of a highly active oxygen-evolving preparation from this organism. This preparation shows oxygen-evolution activities in the range from 2400-2600 mumol of O2/(mg of chlorophyll.h). We show that this preparation is stable enough for room temperature EPR studies. We then use this assay to show that the lineshapes of the D+ and Z+ tyrosine radicals are identical in this preparation, as has been observed in photosystem II complexes from a wide variety of photosynthetic species. We also present the first multiline EPR spectrum that has been observed from the Synechocystis manganese cluster.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00230a020