Loading…

Distribution of porfiromycin in EMT6 solid tumors and normal tissues of BALB/c mice

The distribution of porfiromycin was studied in BALB/c mice bearing EMT6 mammary tumors. The levels of 3H in blood and most tissues peaked approximately 15 minutes after intraperitoneal injection of [3H]porfiromycin. The levels of radioactivity present in most of the tissues and in the tumors were s...

Full description

Saved in:
Bibliographic Details
Published in:JNCI : Journal of the National Cancer Institute 1991-05, Vol.83 (9), p.632-637
Main Authors: KEYES, S. R, ROCKWELL, S, KENNEDY, K. A, SARTORELLI, A. C
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The distribution of porfiromycin was studied in BALB/c mice bearing EMT6 mammary tumors. The levels of 3H in blood and most tissues peaked approximately 15 minutes after intraperitoneal injection of [3H]porfiromycin. The levels of radioactivity present in most of the tissues and in the tumors were similar at 4 hours and 24 hours after administration. Most of the normal tissues showed uniform, low grain densities when analyzed by autoradiography; the liver and the small intestine had the highest labeling densities. Only kidney, bladder, and tumor showed differential distributions of grains from [3H]porfiromycin. In the kidney, higher grain counts were found in cortex than in medullary regions; grains were uniformly distributed within each region. In the bladder, the highest labeling densities were found in regions near the lumen. Tumor regions that had some necrotic features or regions of necrosis that included some viable cells showed higher labeling intensities than healthy-looking tumor regions, probably because the abnormal microenvironments in these regions led to increased rates of activation of porfiromycin to electrophilic species. These findings show that porfiromycin can reach and be activated in tumor regions containing cells resistant to many chemotherapeutic agents and to x rays. The results also support the concept that agents such as porfiromycin can target cells in specific microenvironmental subpopulations of solid tumors.
ISSN:0027-8874
1460-2105
DOI:10.1093/jnci/83.9.632