Loading…

Phycoerythrins of marine unicellular cyanobacteria. II. Characterization of phycobiliproteins with unusually high phycourobilin content

A survey of marine unicellular cyanobacterial strains for phycobiliproteins with high phycourobilin (PUB) content led to a detailed investigation of Synechocystis sp. WH8501. The phycobiliproteins of this strain were purified and characterized with respect to their bilin composition and attachment s...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1991-05, Vol.266 (15), p.9528-9534
Main Authors: SWANSON, R. V, ONG, L. J, WILBANKS, S. M, GLAZER, A. N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A survey of marine unicellular cyanobacterial strains for phycobiliproteins with high phycourobilin (PUB) content led to a detailed investigation of Synechocystis sp. WH8501. The phycobiliproteins of this strain were purified and characterized with respect to their bilin composition and attachment sites. Amino-terminal sequences were determined for the alpha and beta subunits of the phycocyanin and the major and minor phycoerythrins. The amino acid sequences around the attachment sites of all bilin prosthetic groups of the phycocyanin and of the minor phycoerythrin were also determined. The phycocyanin from this strain carries a single PUB on the alpha subunit and two phycocyanobilins on the beta subunit. It is the only phycocyanin known to carry a PUB chromophore. The native protein, isolated in the (alpha beta)2 aggregation state, displays absorption maxima at 490 and 592 nm. Excitation at 470 nm, absorbed almost exclusively by PUB, leads to emission at 644 nm from phycocyanobilin. The major and minor phycoerythrins from strain WH8501 each carry five bilins per alpha beta unit, four PUBs and one phycoerythrobilin. Spectroscopic properties determine that the PUB groups function as energy donors to the sole phycoerythrobilin. Analysis of the bilin peptides unambiguously identifies the phycoerythrobilin at position beta-82 (residue numbering assigned by homology with B-phycoerythrin; Sidler, W., Kumpf, B., Suter, F., Klotz, A.V., Glazer, A.N., and Zuber, H. (1989) Biol. Chem. Hoppe-Seyler 370, 115-124) as the terminal energy acceptor in phycoerythrins.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)92852-8