Loading…
Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition
A metabolically engineered Escherichia coli has been constructed for the production of meso-2,3-butanediol (2,3-BD) under low oxygen condition. Genes responsible for 2,3-BD formation from pyruvate were assembled together to generate a high-copy plasmid pEnBD, in which each gene was transcribed with...
Saved in:
Published in: | Applied microbiology and biotechnology 2010-08, Vol.87 (6), p.2001-2009 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c522t-5bf0098ede76d918c45d570c35177478bc3484b03ba5160dafcd7e6d06f299e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c522t-5bf0098ede76d918c45d570c35177478bc3484b03ba5160dafcd7e6d06f299e83 |
container_end_page | 2009 |
container_issue | 6 |
container_start_page | 2001 |
container_title | Applied microbiology and biotechnology |
container_volume | 87 |
creator | Li, Zheng-Jun Jian, Jia Wei, Xiao-Xing Shen, Xiao-Wen Chen, Guo-Qiang |
description | A metabolically engineered Escherichia coli has been constructed for the production of meso-2,3-butanediol (2,3-BD) under low oxygen condition. Genes responsible for 2,3-BD formation from pyruvate were assembled together to generate a high-copy plasmid pEnBD, in which each gene was transcribed with a constitutive promoter. To eliminate by-product formation under low oxygen condition, genes including ldhA, pta, adhE, and poxB which functioned for the mixed acid fermentation pathways were deleted in E. coli JM109. Compared with the wild type, the quadruple gene deletion mutant produced smaller amounts of acetate, succinate, and ethanol from glucose when cultivated in LB medium in shake flasks under low-aeration. When 2,3-BD producing pathway was introduced via pEnBD into the mutant, higher glucose consumption and faster 2,3-BD production rate compared with that of the wild-type control were observed under aerobic condition in shake flasks. In a 6-L fermentor supplied with only 3% dissolved oxygen (DO), the mutant harboring pEnBD converted glucose to 2,3-BD much faster than the control did. When DO supply was further lowered to 1% DO, the recombinant mutant grew much slower but produced 2,3-BD as a major fermentation metabolic product. In addition, the 2,3-BD yield showed an increase from 0.20 g BD/g glucose for the control to 0.43 g BD/g glucose for the mixed acid pathway deleted mutant grown in fermentors under 1% DO. These results reveals the potential of production of enantiomerically pure 2,3-BD isomer by recombinant E. coli under low oxygen condition. |
doi_str_mv | 10.1007/s00253-010-2676-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_807274691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734031240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-5bf0098ede76d918c45d570c35177478bc3484b03ba5160dafcd7e6d06f299e83</originalsourceid><addsrcrecordid>eNqFkUuPFCEUhYnROG3rD3CjxMS4Eb1A8VqayfhIxrjQWRMKqB4m1cUIVdH-99Kp1klc6AaSy3fP5dyD0FMKbyiAelsBmOAEKBAmlSTsHtrQjjMCknb30QaoEkQJo8_Qo1pvACjTUj5EZww6YxgzG1Q_J19yn9yIb0sOi59TnnAe8D7WTNhrTvpldlMMKY-4P7Ty7Po8Ju_G8YDjtEtTjCUGfFH9dSzJXyeHfQPwMoVY8Jh_4PzzsItTq04hHeUfoweDG2t8crq36Or9xbfzj-Tyy4dP5-8uiReMzUT0A4DRMUQlg6HadyIIBZ4LqlSndO95p7seeO8ElRDc4IOKMoAcmDFR8y16teo2Z9-XWGe7T9XHcWx-8lKtBsVUJw39L6l4B5yydmzRi7_Im7yUqdmwyjAJjKvjYLpCbbW1ljjY25L2rhwsBXtMzq7J2ZacPSZnWet5dhJe-n0Mfzp-R9WAlyfA1bb9objJp3rHcdCci6MQW7nanqZdLHc__Nf052vT4LJ1u9KEr74yoByoVpxKxX8BO3e5eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>792602378</pqid></control><display><type>article</type><title>Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Li, Zheng-Jun ; Jian, Jia ; Wei, Xiao-Xing ; Shen, Xiao-Wen ; Chen, Guo-Qiang</creator><creatorcontrib>Li, Zheng-Jun ; Jian, Jia ; Wei, Xiao-Xing ; Shen, Xiao-Wen ; Chen, Guo-Qiang</creatorcontrib><description>A metabolically engineered Escherichia coli has been constructed for the production of meso-2,3-butanediol (2,3-BD) under low oxygen condition. Genes responsible for 2,3-BD formation from pyruvate were assembled together to generate a high-copy plasmid pEnBD, in which each gene was transcribed with a constitutive promoter. To eliminate by-product formation under low oxygen condition, genes including ldhA, pta, adhE, and poxB which functioned for the mixed acid fermentation pathways were deleted in E. coli JM109. Compared with the wild type, the quadruple gene deletion mutant produced smaller amounts of acetate, succinate, and ethanol from glucose when cultivated in LB medium in shake flasks under low-aeration. When 2,3-BD producing pathway was introduced via pEnBD into the mutant, higher glucose consumption and faster 2,3-BD production rate compared with that of the wild-type control were observed under aerobic condition in shake flasks. In a 6-L fermentor supplied with only 3% dissolved oxygen (DO), the mutant harboring pEnBD converted glucose to 2,3-BD much faster than the control did. When DO supply was further lowered to 1% DO, the recombinant mutant grew much slower but produced 2,3-BD as a major fermentation metabolic product. In addition, the 2,3-BD yield showed an increase from 0.20 g BD/g glucose for the control to 0.43 g BD/g glucose for the mixed acid pathway deleted mutant grown in fermentors under 1% DO. These results reveals the potential of production of enantiomerically pure 2,3-BD isomer by recombinant E. coli under low oxygen condition.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-010-2676-2</identifier><identifier>PMID: 20499229</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Acetic acid ; Acids ; Aerobic conditions ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnological Products and Process Engineering ; Biotechnology ; Butylene Glycols - chemistry ; Butylene Glycols - metabolism ; Cloning ; Dehydrogenases ; Dissolved oxygen ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Ethanol ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Genes ; Genetic Engineering ; Glucose ; Isomerism ; Kinases ; Life Sciences ; meso-2,3-butanediol ; Metabolic engineering ; Metabolism ; Methods. Procedures. Technologies ; Microaerobic ; Microbial engineering. Fermentation and microbial culture technology ; Microbial Genetics and Genomics ; Microbiology ; Mixed acid fermentation ; Oxygen ; Oxygen - metabolism ; Plasmids ; Pneumonia ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2010-08, Vol.87 (6), p.2001-2009</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-5bf0098ede76d918c45d570c35177478bc3484b03ba5160dafcd7e6d06f299e83</citedby><cites>FETCH-LOGICAL-c522t-5bf0098ede76d918c45d570c35177478bc3484b03ba5160dafcd7e6d06f299e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/792602378/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/792602378?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23083352$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20499229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zheng-Jun</creatorcontrib><creatorcontrib>Jian, Jia</creatorcontrib><creatorcontrib>Wei, Xiao-Xing</creatorcontrib><creatorcontrib>Shen, Xiao-Wen</creatorcontrib><creatorcontrib>Chen, Guo-Qiang</creatorcontrib><title>Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>A metabolically engineered Escherichia coli has been constructed for the production of meso-2,3-butanediol (2,3-BD) under low oxygen condition. Genes responsible for 2,3-BD formation from pyruvate were assembled together to generate a high-copy plasmid pEnBD, in which each gene was transcribed with a constitutive promoter. To eliminate by-product formation under low oxygen condition, genes including ldhA, pta, adhE, and poxB which functioned for the mixed acid fermentation pathways were deleted in E. coli JM109. Compared with the wild type, the quadruple gene deletion mutant produced smaller amounts of acetate, succinate, and ethanol from glucose when cultivated in LB medium in shake flasks under low-aeration. When 2,3-BD producing pathway was introduced via pEnBD into the mutant, higher glucose consumption and faster 2,3-BD production rate compared with that of the wild-type control were observed under aerobic condition in shake flasks. In a 6-L fermentor supplied with only 3% dissolved oxygen (DO), the mutant harboring pEnBD converted glucose to 2,3-BD much faster than the control did. When DO supply was further lowered to 1% DO, the recombinant mutant grew much slower but produced 2,3-BD as a major fermentation metabolic product. In addition, the 2,3-BD yield showed an increase from 0.20 g BD/g glucose for the control to 0.43 g BD/g glucose for the mixed acid pathway deleted mutant grown in fermentors under 1% DO. These results reveals the potential of production of enantiomerically pure 2,3-BD isomer by recombinant E. coli under low oxygen condition.</description><subject>Acetic acid</subject><subject>Acids</subject><subject>Aerobic conditions</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>Butylene Glycols - chemistry</subject><subject>Butylene Glycols - metabolism</subject><subject>Cloning</subject><subject>Dehydrogenases</subject><subject>Dissolved oxygen</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genetic Engineering</subject><subject>Glucose</subject><subject>Isomerism</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>meso-2,3-butanediol</subject><subject>Metabolic engineering</subject><subject>Metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Microaerobic</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mixed acid fermentation</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Plasmids</subject><subject>Pneumonia</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkUuPFCEUhYnROG3rD3CjxMS4Eb1A8VqayfhIxrjQWRMKqB4m1cUIVdH-99Kp1klc6AaSy3fP5dyD0FMKbyiAelsBmOAEKBAmlSTsHtrQjjMCknb30QaoEkQJo8_Qo1pvACjTUj5EZww6YxgzG1Q_J19yn9yIb0sOi59TnnAe8D7WTNhrTvpldlMMKY-4P7Ty7Po8Ju_G8YDjtEtTjCUGfFH9dSzJXyeHfQPwMoVY8Jh_4PzzsItTq04hHeUfoweDG2t8crq36Or9xbfzj-Tyy4dP5-8uiReMzUT0A4DRMUQlg6HadyIIBZ4LqlSndO95p7seeO8ElRDc4IOKMoAcmDFR8y16teo2Z9-XWGe7T9XHcWx-8lKtBsVUJw39L6l4B5yydmzRi7_Im7yUqdmwyjAJjKvjYLpCbbW1ljjY25L2rhwsBXtMzq7J2ZacPSZnWet5dhJe-n0Mfzp-R9WAlyfA1bb9objJp3rHcdCci6MQW7nanqZdLHc__Nf052vT4LJ1u9KEr74yoByoVpxKxX8BO3e5eA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Li, Zheng-Jun</creator><creator>Jian, Jia</creator><creator>Wei, Xiao-Xing</creator><creator>Shen, Xiao-Wen</creator><creator>Chen, Guo-Qiang</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7U7</scope></search><sort><creationdate>20100801</creationdate><title>Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition</title><author>Li, Zheng-Jun ; Jian, Jia ; Wei, Xiao-Xing ; Shen, Xiao-Wen ; Chen, Guo-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-5bf0098ede76d918c45d570c35177478bc3484b03ba5160dafcd7e6d06f299e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetic acid</topic><topic>Acids</topic><topic>Aerobic conditions</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>Butylene Glycols - chemistry</topic><topic>Butylene Glycols - metabolism</topic><topic>Cloning</topic><topic>Dehydrogenases</topic><topic>Dissolved oxygen</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genetic Engineering</topic><topic>Glucose</topic><topic>Isomerism</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>meso-2,3-butanediol</topic><topic>Metabolic engineering</topic><topic>Metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Microaerobic</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mixed acid fermentation</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Plasmids</topic><topic>Pneumonia</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zheng-Jun</creatorcontrib><creatorcontrib>Jian, Jia</creatorcontrib><creatorcontrib>Wei, Xiao-Xing</creatorcontrib><creatorcontrib>Shen, Xiao-Wen</creatorcontrib><creatorcontrib>Chen, Guo-Qiang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zheng-Jun</au><au>Jian, Jia</au><au>Wei, Xiao-Xing</au><au>Shen, Xiao-Wen</au><au>Chen, Guo-Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>87</volume><issue>6</issue><spage>2001</spage><epage>2009</epage><pages>2001-2009</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>A metabolically engineered Escherichia coli has been constructed for the production of meso-2,3-butanediol (2,3-BD) under low oxygen condition. Genes responsible for 2,3-BD formation from pyruvate were assembled together to generate a high-copy plasmid pEnBD, in which each gene was transcribed with a constitutive promoter. To eliminate by-product formation under low oxygen condition, genes including ldhA, pta, adhE, and poxB which functioned for the mixed acid fermentation pathways were deleted in E. coli JM109. Compared with the wild type, the quadruple gene deletion mutant produced smaller amounts of acetate, succinate, and ethanol from glucose when cultivated in LB medium in shake flasks under low-aeration. When 2,3-BD producing pathway was introduced via pEnBD into the mutant, higher glucose consumption and faster 2,3-BD production rate compared with that of the wild-type control were observed under aerobic condition in shake flasks. In a 6-L fermentor supplied with only 3% dissolved oxygen (DO), the mutant harboring pEnBD converted glucose to 2,3-BD much faster than the control did. When DO supply was further lowered to 1% DO, the recombinant mutant grew much slower but produced 2,3-BD as a major fermentation metabolic product. In addition, the 2,3-BD yield showed an increase from 0.20 g BD/g glucose for the control to 0.43 g BD/g glucose for the mixed acid pathway deleted mutant grown in fermentors under 1% DO. These results reveals the potential of production of enantiomerically pure 2,3-BD isomer by recombinant E. coli under low oxygen condition.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20499229</pmid><doi>10.1007/s00253-010-2676-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2010-08, Vol.87 (6), p.2001-2009 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_807274691 |
source | ABI/INFORM Global; Springer Link |
subjects | Acetic acid Acids Aerobic conditions Biological and medical sciences Biomedical and Life Sciences Biotechnological Products and Process Engineering Biotechnology Butylene Glycols - chemistry Butylene Glycols - metabolism Cloning Dehydrogenases Dissolved oxygen E coli Enzymes Escherichia coli Escherichia coli - chemistry Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Ethanol Fermentation Fundamental and applied biological sciences. Psychology Genes Genetic Engineering Glucose Isomerism Kinases Life Sciences meso-2,3-butanediol Metabolic engineering Metabolism Methods. Procedures. Technologies Microaerobic Microbial engineering. Fermentation and microbial culture technology Microbial Genetics and Genomics Microbiology Mixed acid fermentation Oxygen Oxygen - metabolism Plasmids Pneumonia Studies |
title | Microbial production of meso-2,3-butanediol by metabolically engineered Escherichia coli under low oxygen condition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20production%20of%20meso-2,3-butanediol%20by%20metabolically%20engineered%20Escherichia%20coli%20under%20low%20oxygen%20condition&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Li,%20Zheng-Jun&rft.date=2010-08-01&rft.volume=87&rft.issue=6&rft.spage=2001&rft.epage=2009&rft.pages=2001-2009&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-010-2676-2&rft_dat=%3Cproquest_cross%3E734031240%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c522t-5bf0098ede76d918c45d570c35177478bc3484b03ba5160dafcd7e6d06f299e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=792602378&rft_id=info:pmid/20499229&rfr_iscdi=true |