Loading…

Near-Surface Air Temperature Retrieval Derived from AMSU-A and Sea Surface Temperature Observations

A 10-m air temperature (Ta) retrieval using Advanced Microwave Sounding Unit A (AMSU-A) and satellite-derived sea surface temperature (Ts) observations is presented. The multivariable linear regression retrieval uses AMSU-A brightness temperatures from the 52.8- and 53.6-GHz channels and satellite-d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of atmospheric and oceanic technology 2010-10, Vol.27 (10), p.1769-1776
Main Authors: Jackson, Darren L, Wick, Gary A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 10-m air temperature (Ta) retrieval using Advanced Microwave Sounding Unit A (AMSU-A) and satellite-derived sea surface temperature (Ts) observations is presented. The multivariable linear regression retrieval uses AMSU-A brightness temperatures from the 52.8- and 53.6-GHz channels and satellite-derived daily sea surface temperatures to determine Ta. A regression error of 0.83°C using 841 matched satellite and ship observations demonstrates a high-quality fit of the satellite observations with in situ Ta. Validation of the retrieval using independent International Comprehensive Ocean–Atmosphere Dataset (ICOADS) ship and buoy observations results in a bias of −0.21°C and root-mean-square (RMS) differences of 1.55°C. A comparison with previous satellite-based Ta retrievals indicates less bias and significantly smaller RMS differences for the new retrieval. Regional biases inherent to previous retrievals are reduced in several oceanic regions using the new Ta retrieval. Satellite-derived Ts–Ta data were found to agree well with ICOADS buoy data and were significantly improved from previous retrievals.
ISSN:0739-0572
1520-0426
DOI:10.1175/2010JTECHA1414.1