Loading…

Automatic postural responses in the cat: responses to headward and tailward translation

EMG responses, vertical and A-P shear forces and kinematics of "automatic postural responses" to unexpected translational perturbations in the headward and tailward directions were studied in cats. Muscles acting on the major joints of the forelimbs and hindlimbs were studied. Movement of...

Full description

Saved in:
Bibliographic Details
Published in:Experimental brain research 1983-01, Vol.50 (1), p.45-61
Main Authors: Rushmer, D S, Russell, C J, macpherson, J, Phillips, J O, Dunbar, D C
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:EMG responses, vertical and A-P shear forces and kinematics of "automatic postural responses" to unexpected translational perturbations in the headward and tailward directions were studied in cats. Muscles acting on the major joints of the forelimbs and hindlimbs were studied. Movement of the animals in response to perturbation were highly stereotyped and consisted of two phases: (1) motion of the feet during platform movement while the trunk remained relatively stationary followed by (2) active correction of posture by movement of the trunk in the direction of perturbation. Vertical force changes occurred after the perturbation was well underway (latency 65 ms) and were related to the displacement of the center of mass and active correction of trunk position. Shear forces showed both passive (inertial) and active components and suggested that the majority of the torque necessary for postural correction was generated by the hindlimb. EMG responses in forelimb and shoulder muscles were most correlated with increase in vertical force, showing a generalized co-contraction in tailward translation (when these limbs were loaded) and little activity when the forelimbs were unloaded. EMG responses in hindlimb showed reciprocal activation of agonists and antagonists during perturbation with strong synergies of thigh and foot flexors in tailward translation and thigh and foot extensors in headward translation. The forelimb EMG patterns were most consistent with the conclusion that the forelimb is used primarily for vertical support during perturbation. It was concluded that hindlimb EMG responses were appropriate for both vertical support and performance of the postural correction. The hindlimb muscle synergies observed during translation are the "mirror image" of those observed in humans by other workers.
ISSN:0014-4819
1432-1106
DOI:10.1007/BF00238231