Loading…

Contracture and the Calcium Paradox in the Rat Heart

The role of contracture in the manifestation of calcium paradox-induced damage was examined using 2,3-butanedione monoxime (BDM) to inhibit myofibrillar activity. Calcium and sodium gain, loss of intracellular components, and changes in structure were monitored. If 30 mM BDM was added at the time of...

Full description

Saved in:
Bibliographic Details
Published in:Circulation research 1987-10, Vol.61 (4), p.560-569
Main Authors: Daly, Michael J, Elz, Jennifer S, Nayler, Winifred G
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of contracture in the manifestation of calcium paradox-induced damage was examined using 2,3-butanedione monoxime (BDM) to inhibit myofibrillar activity. Calcium and sodium gain, loss of intracellular components, and changes in structure were monitored. If 30 mM BDM was added at the time of calcium repletion after 10 minutes of calcium-free perfusion, some protection was afforded, particularly at the early stages of calcium repletion. However, much greater protection was obtained if BDM was present during the final 2 minutes of calcium-free perfusion and throughout repletion. Sodium gain and loss of intracellular components were markedly attenuated, as was the incidence of severely contracted cells. Calcium gain, although significantly reduced during the period of repletion, was not abolished. After 10 minutes of repletion, a calcium content of 11.44 ± 1.57 μmol/g dry wt was observed. This suggests that other noncontracture related routes of calcium entry are involved. If BDM is removed after 5 minutes of calcium repletion and perfusion is continued with BDM-free perfusate, there is a rapid gam of sodium, further gain of calcium, loss of intracellular components and the cells contract severely, tearing away from neighboring cells. It is evident, therefore, that returning calcium to hearts after a period of calcium-free perfusion under conditions that significantly reduce the typical calcium paradox-associated damage does not necessarily repair the underlying defect. These results support the hypothesis that contracture-induced sarcolemmal disruption may be responsible for the terminal manifestation of the calcium paradox.
ISSN:0009-7330
1524-4571
DOI:10.1161/01.res.61.4.560