Loading…

Origin of a gene regulatory mechanism in the evolution of echinoderms

A rich diversity of ancient sea urchin lineages survives to the present. These include several advanced orders as well as the cidaroids, which represent the group ancestral to all other sea urchins. Here we show that all advanced groups of sea urchins examined possess in their eggs a class of matern...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1984-07, Vol.310 (5975), p.312-314
Main Authors: Raff, Rudolf A., Anstrom, John A., Huffman, Carolyn J., Leaf, David S., Loo, Jun-Hun, Showman, Richard M., Wells, Dan E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a395t-99909bd85a3ae3d6ffa654ede65f6f487f9715f31007d8cdf3bb4db0fb40e3003
cites cdi_FETCH-LOGICAL-a395t-99909bd85a3ae3d6ffa654ede65f6f487f9715f31007d8cdf3bb4db0fb40e3003
container_end_page 314
container_issue 5975
container_start_page 312
container_title Nature (London)
container_volume 310
creator Raff, Rudolf A.
Anstrom, John A.
Huffman, Carolyn J.
Leaf, David S.
Loo, Jun-Hun
Showman, Richard M.
Wells, Dan E.
description A rich diversity of ancient sea urchin lineages survives to the present. These include several advanced orders as well as the cidaroids, which represent the group ancestral to all other sea urchins. Here we show that all advanced groups of sea urchins examined possess in their eggs a class of maternal messenger RNA (mRNA) encoded by the evolutionary highly conserved α -subtype histone genes. The maternal histone mRNAs are unique in their time of accumulation in oogenesis, their localization in the egg nucleus and their delayed timing of translation after fertilization. Cidaroid sea urchins as well as other echinoderm classes, such as starfish and sea cucumbers, possess the genes but do not have maternal α -subtype histone mRNAs in their eggs. Thus, although all the echinoderms examined transcribe α -subtype histone genes during embryogenesis, the expression of these genes as maternal mRNAs is confined to advanced sea urchins. The fossil record allows us to pinpoint the evolution of this mode of expression of α -histone genes to the time of the splitting of advanced sea urchin lineages from the ancestral cidaroids in a radiation which occurred in a relatively brief interval of time ∼190–200 Myr ago. The origin of a unique gene regulatory mechanism can thus be correlated with a set of macroevolutionary events.
doi_str_mv 10.1038/310312a0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_81181710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>81181710</sourcerecordid><originalsourceid>FETCH-LOGICAL-a395t-99909bd85a3ae3d6ffa654ede65f6f487f9715f31007d8cdf3bb4db0fb40e3003</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUopSPwBpAwIwRA41x9xRlSVD6lSF5gjJzm3qZIY7ASp_x6Xhi4MLL7hfXQnv4RcUrinwNQDCy-dajgiY8oTGXOpkmMyBpiqGBSTp-TM-w0ACJrwERlJLqdTKsZkvnTVqmojayIdrbDFyOGqr3Vn3TZqsFjrtvJNFES3xgi_bN13lf3xIaxaW6Jr_Dk5Mbr2eDHMCXl_mr_NXuLF8vl19riINUtFF6dpCmleKqGZRlZKY7QUHEuUwkjDVWLShAoTPgNJqYrSsDznZQ4m54AMgE3IzX7vh7OfPfouaypfYF3rFm3vM0Wpogn9H1IOKuViB2_3sHDWe4cm-3BVo902o5Dtqs1-qw30atjZ5w2WBzh0GfLrIde-0LVxui0qf2BKCSkoDexuz3xI2hW6bGN714ba_p78Bl6XjI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14089450</pqid></control><display><type>article</type><title>Origin of a gene regulatory mechanism in the evolution of echinoderms</title><source>Nature Journals Online</source><creator>Raff, Rudolf A. ; Anstrom, John A. ; Huffman, Carolyn J. ; Leaf, David S. ; Loo, Jun-Hun ; Showman, Richard M. ; Wells, Dan E.</creator><creatorcontrib>Raff, Rudolf A. ; Anstrom, John A. ; Huffman, Carolyn J. ; Leaf, David S. ; Loo, Jun-Hun ; Showman, Richard M. ; Wells, Dan E.</creatorcontrib><description>A rich diversity of ancient sea urchin lineages survives to the present. These include several advanced orders as well as the cidaroids, which represent the group ancestral to all other sea urchins. Here we show that all advanced groups of sea urchins examined possess in their eggs a class of maternal messenger RNA (mRNA) encoded by the evolutionary highly conserved α -subtype histone genes. The maternal histone mRNAs are unique in their time of accumulation in oogenesis, their localization in the egg nucleus and their delayed timing of translation after fertilization. Cidaroid sea urchins as well as other echinoderm classes, such as starfish and sea cucumbers, possess the genes but do not have maternal α -subtype histone mRNAs in their eggs. Thus, although all the echinoderms examined transcribe α -subtype histone genes during embryogenesis, the expression of these genes as maternal mRNAs is confined to advanced sea urchins. The fossil record allows us to pinpoint the evolution of this mode of expression of α -histone genes to the time of the splitting of advanced sea urchin lineages from the ancestral cidaroids in a radiation which occurred in a relatively brief interval of time ∼190–200 Myr ago. The origin of a unique gene regulatory mechanism can thus be correlated with a set of macroevolutionary events.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/310312a0</identifier><identifier>PMID: 6462215</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Biological and medical sciences ; Biological Evolution ; Cell Nucleus - metabolism ; Echinodermata - embryology ; Echinodermata - genetics ; Echinoidea ; Female ; Fertilization ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Genetics of eukaryotes. Biological and molecular evolution ; Histones - genetics ; Humanities and Social Sciences ; letter ; Marine ; multidisciplinary ; Oogenesis ; Ovum - metabolism ; Protein Biosynthesis ; RNA, Messenger - metabolism ; Science ; Science (multidisciplinary) ; Sea Urchins - genetics ; Starfish - genetics ; Temnopleuridae</subject><ispartof>Nature (London), 1984-07, Vol.310 (5975), p.312-314</ispartof><rights>Springer Nature Limited 1984</rights><rights>1985 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a395t-99909bd85a3ae3d6ffa654ede65f6f487f9715f31007d8cdf3bb4db0fb40e3003</citedby><cites>FETCH-LOGICAL-a395t-99909bd85a3ae3d6ffa654ede65f6f487f9715f31007d8cdf3bb4db0fb40e3003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8856511$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6462215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raff, Rudolf A.</creatorcontrib><creatorcontrib>Anstrom, John A.</creatorcontrib><creatorcontrib>Huffman, Carolyn J.</creatorcontrib><creatorcontrib>Leaf, David S.</creatorcontrib><creatorcontrib>Loo, Jun-Hun</creatorcontrib><creatorcontrib>Showman, Richard M.</creatorcontrib><creatorcontrib>Wells, Dan E.</creatorcontrib><title>Origin of a gene regulatory mechanism in the evolution of echinoderms</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A rich diversity of ancient sea urchin lineages survives to the present. These include several advanced orders as well as the cidaroids, which represent the group ancestral to all other sea urchins. Here we show that all advanced groups of sea urchins examined possess in their eggs a class of maternal messenger RNA (mRNA) encoded by the evolutionary highly conserved α -subtype histone genes. The maternal histone mRNAs are unique in their time of accumulation in oogenesis, their localization in the egg nucleus and their delayed timing of translation after fertilization. Cidaroid sea urchins as well as other echinoderm classes, such as starfish and sea cucumbers, possess the genes but do not have maternal α -subtype histone mRNAs in their eggs. Thus, although all the echinoderms examined transcribe α -subtype histone genes during embryogenesis, the expression of these genes as maternal mRNAs is confined to advanced sea urchins. The fossil record allows us to pinpoint the evolution of this mode of expression of α -histone genes to the time of the splitting of advanced sea urchin lineages from the ancestral cidaroids in a radiation which occurred in a relatively brief interval of time ∼190–200 Myr ago. The origin of a unique gene regulatory mechanism can thus be correlated with a set of macroevolutionary events.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Cell Nucleus - metabolism</subject><subject>Echinodermata - embryology</subject><subject>Echinodermata - genetics</subject><subject>Echinoidea</subject><subject>Female</subject><subject>Fertilization</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Histones - genetics</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Marine</subject><subject>multidisciplinary</subject><subject>Oogenesis</subject><subject>Ovum - metabolism</subject><subject>Protein Biosynthesis</subject><subject>RNA, Messenger - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sea Urchins - genetics</subject><subject>Starfish - genetics</subject><subject>Temnopleuridae</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQBmALgUopSPwBpAwIwRA41x9xRlSVD6lSF5gjJzm3qZIY7ASp_x6Xhi4MLL7hfXQnv4RcUrinwNQDCy-dajgiY8oTGXOpkmMyBpiqGBSTp-TM-w0ACJrwERlJLqdTKsZkvnTVqmojayIdrbDFyOGqr3Vn3TZqsFjrtvJNFES3xgi_bN13lf3xIaxaW6Jr_Dk5Mbr2eDHMCXl_mr_NXuLF8vl19riINUtFF6dpCmleKqGZRlZKY7QUHEuUwkjDVWLShAoTPgNJqYrSsDznZQ4m54AMgE3IzX7vh7OfPfouaypfYF3rFm3vM0Wpogn9H1IOKuViB2_3sHDWe4cm-3BVo902o5Dtqs1-qw30atjZ5w2WBzh0GfLrIde-0LVxui0qf2BKCSkoDexuz3xI2hW6bGN714ba_p78Bl6XjI0</recordid><startdate>19840726</startdate><enddate>19840726</enddate><creator>Raff, Rudolf A.</creator><creator>Anstrom, John A.</creator><creator>Huffman, Carolyn J.</creator><creator>Leaf, David S.</creator><creator>Loo, Jun-Hun</creator><creator>Showman, Richard M.</creator><creator>Wells, Dan E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19840726</creationdate><title>Origin of a gene regulatory mechanism in the evolution of echinoderms</title><author>Raff, Rudolf A. ; Anstrom, John A. ; Huffman, Carolyn J. ; Leaf, David S. ; Loo, Jun-Hun ; Showman, Richard M. ; Wells, Dan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a395t-99909bd85a3ae3d6ffa654ede65f6f487f9715f31007d8cdf3bb4db0fb40e3003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Cell Nucleus - metabolism</topic><topic>Echinodermata - embryology</topic><topic>Echinodermata - genetics</topic><topic>Echinoidea</topic><topic>Female</topic><topic>Fertilization</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Histones - genetics</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Marine</topic><topic>multidisciplinary</topic><topic>Oogenesis</topic><topic>Ovum - metabolism</topic><topic>Protein Biosynthesis</topic><topic>RNA, Messenger - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sea Urchins - genetics</topic><topic>Starfish - genetics</topic><topic>Temnopleuridae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raff, Rudolf A.</creatorcontrib><creatorcontrib>Anstrom, John A.</creatorcontrib><creatorcontrib>Huffman, Carolyn J.</creatorcontrib><creatorcontrib>Leaf, David S.</creatorcontrib><creatorcontrib>Loo, Jun-Hun</creatorcontrib><creatorcontrib>Showman, Richard M.</creatorcontrib><creatorcontrib>Wells, Dan E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raff, Rudolf A.</au><au>Anstrom, John A.</au><au>Huffman, Carolyn J.</au><au>Leaf, David S.</au><au>Loo, Jun-Hun</au><au>Showman, Richard M.</au><au>Wells, Dan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of a gene regulatory mechanism in the evolution of echinoderms</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>1984-07-26</date><risdate>1984</risdate><volume>310</volume><issue>5975</issue><spage>312</spage><epage>314</epage><pages>312-314</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>A rich diversity of ancient sea urchin lineages survives to the present. These include several advanced orders as well as the cidaroids, which represent the group ancestral to all other sea urchins. Here we show that all advanced groups of sea urchins examined possess in their eggs a class of maternal messenger RNA (mRNA) encoded by the evolutionary highly conserved α -subtype histone genes. The maternal histone mRNAs are unique in their time of accumulation in oogenesis, their localization in the egg nucleus and their delayed timing of translation after fertilization. Cidaroid sea urchins as well as other echinoderm classes, such as starfish and sea cucumbers, possess the genes but do not have maternal α -subtype histone mRNAs in their eggs. Thus, although all the echinoderms examined transcribe α -subtype histone genes during embryogenesis, the expression of these genes as maternal mRNAs is confined to advanced sea urchins. The fossil record allows us to pinpoint the evolution of this mode of expression of α -histone genes to the time of the splitting of advanced sea urchin lineages from the ancestral cidaroids in a radiation which occurred in a relatively brief interval of time ∼190–200 Myr ago. The origin of a unique gene regulatory mechanism can thus be correlated with a set of macroevolutionary events.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>6462215</pmid><doi>10.1038/310312a0</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1984-07, Vol.310 (5975), p.312-314
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_81181710
source Nature Journals Online
subjects Animals
Biological and medical sciences
Biological Evolution
Cell Nucleus - metabolism
Echinodermata - embryology
Echinodermata - genetics
Echinoidea
Female
Fertilization
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation
Genetics of eukaryotes. Biological and molecular evolution
Histones - genetics
Humanities and Social Sciences
letter
Marine
multidisciplinary
Oogenesis
Ovum - metabolism
Protein Biosynthesis
RNA, Messenger - metabolism
Science
Science (multidisciplinary)
Sea Urchins - genetics
Starfish - genetics
Temnopleuridae
title Origin of a gene regulatory mechanism in the evolution of echinoderms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20a%20gene%20regulatory%20mechanism%20in%20the%20evolution%20of%20echinoderms&rft.jtitle=Nature%20(London)&rft.au=Raff,%20Rudolf%20A.&rft.date=1984-07-26&rft.volume=310&rft.issue=5975&rft.spage=312&rft.epage=314&rft.pages=312-314&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/310312a0&rft_dat=%3Cproquest_cross%3E81181710%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a395t-99909bd85a3ae3d6ffa654ede65f6f487f9715f31007d8cdf3bb4db0fb40e3003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14089450&rft_id=info:pmid/6462215&rfr_iscdi=true