Loading…

A multiple mutant of Escherichia coli lacking the exoribonucleases RNase II, RNase D, and RNase BN

A multiple mutant strain of Escherichia coli containing mutations affecting the exoribonucleases, RNase II, RNase D, and RNase BN, and also the endonuclease, RNase I, was constructed by P1-mediated transduction. Extracts of the mutant strain were lacking the aforementioned RNase activities. The mult...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1984-10, Vol.259 (19), p.11651-11653
Main Authors: ZANIEWSKI, R, PETKAITIS, E, DEUTSCHER, M. P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A multiple mutant strain of Escherichia coli containing mutations affecting the exoribonucleases, RNase II, RNase D, and RNase BN, and also the endonuclease, RNase I, was constructed by P1-mediated transduction. Extracts of the mutant strain were lacking the aforementioned RNase activities. The multiple mutant displayed normal growth in both rich and minimal media at a variety of temperatures, recovered from starvation essentially as the wild-type parent, and could support the growth of a variety of bacteriophages. In addition, RNA synthesis was normal and no precursor RNA accumulation was observed. The properties of the mutant strain indicate that the three exoribonucleases are not essential for the viability of E. coli. The implications of these findings to our understanding of RNA processing and degradation are discussed.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(20)71254-8