Loading…

The ontogeny of Holocene and Late Pleistocene human postcranial strength

While a wide variety of studies have focused on population variation in adult cross‐sectional properties, relatively little is known about population variation in postcranial robusticity in immature individuals. Furthermore, the age at which the population differences readily detected in adults mani...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physical anthropology 2010-01, Vol.141 (1), p.16-37
Main Author: Cowgill, Libby W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:While a wide variety of studies have focused on population variation in adult cross‐sectional properties, relatively little is known about population variation in postcranial robusticity in immature individuals. Furthermore, the age at which the population differences readily detected in adults manifest during growth is also unknown. This research addresses these gaps in our current understanding through the analysis of immature humeral and femoral long bone strength. Cross‐sectional geometry was used to compare the developmental trajectories of diaphyseal strength in Late Pleistocene Neandertal and modern human subadults to a sample of immature humans from seven geographically diverse Holocene populations. Population differences in size‐standardized cross‐sectional properties appear to be systemic and develop very early in ontogeny in the Holocene sample. In many cases, these differences are present before one year of age. In general, the Late Pleistocene fossil samples fit within the range of recent human variation in long bone strength. Population differences detected here are likely related to a combination of factors including activity patterns, genetic propensities, and nutritional status. These results highlight the complex mosaic of processes that result in adult postcranial robusticity, and suggest that further exploration of the developmental interplay between intrinsic and extrinsic influences on skeletal robusticity will likely enhance our understanding of adult postcranial morphology. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.
ISSN:0002-9483
1096-8644
DOI:10.1002/ajpa.21107