Loading…

A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit

The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give b...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical population biology 2010-09, Vol.78 (2), p.77-92
Main Authors: Etheridge, Alison M., Griffiths, Robert C., Taylor, Jesse E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3
cites cdi_FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3
container_end_page 92
container_issue 2
container_start_page 77
container_title Theoretical population biology
container_volume 78
creator Etheridge, Alison M.
Griffiths, Robert C.
Taylor, Jesse E.
description The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming–Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.
doi_str_mv 10.1016/j.tpb.2010.05.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_815533638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004058091000047X</els_id><sourcerecordid>815533638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3</originalsourceid><addsrcrecordid>eNqFkUFv2zAMhYWhxZJm-wG9DLr1MqeUFMkydgqCri2QYpftrMkSvSiQ7cxyWvTfV0Gyoqf1RJD4-EC-R8glgzkDpq6383FXzznkHuQcYPGBTBlUqgDB5RmZ5gkUUkM1IRcpbQFAMyE-kgkHpSVnekp-L6nrbcTksBup39tId0PvMCUaOmrpQz_Yjra9x0ifwrihf7ALjiaM6MbQd1-p7TwdN0ijbWtv36rF0IbxEzlvbEz4-VRn5Nf3m5-ru2L94_Z-tVwXTujFWLgSnYL8CRcNVKIEr4VqsFELDqJCzMUKB76RNbPCK1uVC11xVaOyJecoZuTqqJvP_7vHNJo25DNitB32-2Q0k1IIJfS75EFYgZJlJtmRdEOf0oCN2Q2htcOzYWAOCZityQmYQwIGpMl-550vJ_V93aJ_3fhneQa-HQHMbjwGHExyATuHPgzZU-P78B_5F_wYlVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748960657</pqid></control><display><type>article</type><title>A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit</title><source>ScienceDirect Freedom Collection</source><creator>Etheridge, Alison M. ; Griffiths, Robert C. ; Taylor, Jesse E.</creator><creatorcontrib>Etheridge, Alison M. ; Griffiths, Robert C. ; Taylor, Jesse E.</creatorcontrib><description>The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming–Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.</description><identifier>ISSN: 0040-5809</identifier><identifier>EISSN: 1096-0325</identifier><identifier>DOI: 10.1016/j.tpb.2010.05.004</identifier><identifier>PMID: 20685218</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Birth ; Birth Rate ; Cannings model ; Coalescent process ; Genetics, Population ; Humans ; Lambda coalescent ; Models, Genetic ; Moran model ; Mutation ; Population Dynamics ; Selection, Genetic ; Stochastic Processes ; Survival Analysis ; Viability selection</subject><ispartof>Theoretical population biology, 2010-09, Vol.78 (2), p.77-92</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3</citedby><cites>FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20685218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Etheridge, Alison M.</creatorcontrib><creatorcontrib>Griffiths, Robert C.</creatorcontrib><creatorcontrib>Taylor, Jesse E.</creatorcontrib><title>A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit</title><title>Theoretical population biology</title><addtitle>Theor Popul Biol</addtitle><description>The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming–Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.</description><subject>Animals</subject><subject>Birth</subject><subject>Birth Rate</subject><subject>Cannings model</subject><subject>Coalescent process</subject><subject>Genetics, Population</subject><subject>Humans</subject><subject>Lambda coalescent</subject><subject>Models, Genetic</subject><subject>Moran model</subject><subject>Mutation</subject><subject>Population Dynamics</subject><subject>Selection, Genetic</subject><subject>Stochastic Processes</subject><subject>Survival Analysis</subject><subject>Viability selection</subject><issn>0040-5809</issn><issn>1096-0325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv2zAMhYWhxZJm-wG9DLr1MqeUFMkydgqCri2QYpftrMkSvSiQ7cxyWvTfV0Gyoqf1RJD4-EC-R8glgzkDpq6383FXzznkHuQcYPGBTBlUqgDB5RmZ5gkUUkM1IRcpbQFAMyE-kgkHpSVnekp-L6nrbcTksBup39tId0PvMCUaOmrpQz_Yjra9x0ifwrihf7ALjiaM6MbQd1-p7TwdN0ijbWtv36rF0IbxEzlvbEz4-VRn5Nf3m5-ru2L94_Z-tVwXTujFWLgSnYL8CRcNVKIEr4VqsFELDqJCzMUKB76RNbPCK1uVC11xVaOyJecoZuTqqJvP_7vHNJo25DNitB32-2Q0k1IIJfS75EFYgZJlJtmRdEOf0oCN2Q2htcOzYWAOCZityQmYQwIGpMl-550vJ_V93aJ_3fhneQa-HQHMbjwGHExyATuHPgzZU-P78B_5F_wYlVs</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Etheridge, Alison M.</creator><creator>Griffiths, Robert C.</creator><creator>Taylor, Jesse E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>201009</creationdate><title>A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit</title><author>Etheridge, Alison M. ; Griffiths, Robert C. ; Taylor, Jesse E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Birth</topic><topic>Birth Rate</topic><topic>Cannings model</topic><topic>Coalescent process</topic><topic>Genetics, Population</topic><topic>Humans</topic><topic>Lambda coalescent</topic><topic>Models, Genetic</topic><topic>Moran model</topic><topic>Mutation</topic><topic>Population Dynamics</topic><topic>Selection, Genetic</topic><topic>Stochastic Processes</topic><topic>Survival Analysis</topic><topic>Viability selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etheridge, Alison M.</creatorcontrib><creatorcontrib>Griffiths, Robert C.</creatorcontrib><creatorcontrib>Taylor, Jesse E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Theoretical population biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etheridge, Alison M.</au><au>Griffiths, Robert C.</au><au>Taylor, Jesse E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit</atitle><jtitle>Theoretical population biology</jtitle><addtitle>Theor Popul Biol</addtitle><date>2010-09</date><risdate>2010</risdate><volume>78</volume><issue>2</issue><spage>77</spage><epage>92</epage><pages>77-92</pages><issn>0040-5809</issn><eissn>1096-0325</eissn><abstract>The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming–Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20685218</pmid><doi>10.1016/j.tpb.2010.05.004</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5809
ispartof Theoretical population biology, 2010-09, Vol.78 (2), p.77-92
issn 0040-5809
1096-0325
language eng
recordid cdi_proquest_miscellaneous_815533638
source ScienceDirect Freedom Collection
subjects Animals
Birth
Birth Rate
Cannings model
Coalescent process
Genetics, Population
Humans
Lambda coalescent
Models, Genetic
Moran model
Mutation
Population Dynamics
Selection, Genetic
Stochastic Processes
Survival Analysis
Viability selection
title A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20coalescent%20dual%20process%20in%20a%20Moran%20model%20with%20genic%20selection,%20and%20the%20lambda%20coalescent%20limit&rft.jtitle=Theoretical%20population%20biology&rft.au=Etheridge,%20Alison%20M.&rft.date=2010-09&rft.volume=78&rft.issue=2&rft.spage=77&rft.epage=92&rft.pages=77-92&rft.issn=0040-5809&rft.eissn=1096-0325&rft_id=info:doi/10.1016/j.tpb.2010.05.004&rft_dat=%3Cproquest_cross%3E815533638%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=748960657&rft_id=info:pmid/20685218&rfr_iscdi=true