Loading…
A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit
The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give b...
Saved in:
Published in: | Theoretical population biology 2010-09, Vol.78 (2), p.77-92 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3 |
container_end_page | 92 |
container_issue | 2 |
container_start_page | 77 |
container_title | Theoretical population biology |
container_volume | 78 |
creator | Etheridge, Alison M. Griffiths, Robert C. Taylor, Jesse E. |
description | The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming–Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process. |
doi_str_mv | 10.1016/j.tpb.2010.05.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_815533638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004058091000047X</els_id><sourcerecordid>815533638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3</originalsourceid><addsrcrecordid>eNqFkUFv2zAMhYWhxZJm-wG9DLr1MqeUFMkydgqCri2QYpftrMkSvSiQ7cxyWvTfV0Gyoqf1RJD4-EC-R8glgzkDpq6383FXzznkHuQcYPGBTBlUqgDB5RmZ5gkUUkM1IRcpbQFAMyE-kgkHpSVnekp-L6nrbcTksBup39tId0PvMCUaOmrpQz_Yjra9x0ifwrihf7ALjiaM6MbQd1-p7TwdN0ijbWtv36rF0IbxEzlvbEz4-VRn5Nf3m5-ru2L94_Z-tVwXTujFWLgSnYL8CRcNVKIEr4VqsFELDqJCzMUKB76RNbPCK1uVC11xVaOyJecoZuTqqJvP_7vHNJo25DNitB32-2Q0k1IIJfS75EFYgZJlJtmRdEOf0oCN2Q2htcOzYWAOCZityQmYQwIGpMl-550vJ_V93aJ_3fhneQa-HQHMbjwGHExyATuHPgzZU-P78B_5F_wYlVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748960657</pqid></control><display><type>article</type><title>A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit</title><source>ScienceDirect Freedom Collection</source><creator>Etheridge, Alison M. ; Griffiths, Robert C. ; Taylor, Jesse E.</creator><creatorcontrib>Etheridge, Alison M. ; Griffiths, Robert C. ; Taylor, Jesse E.</creatorcontrib><description>The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming–Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.</description><identifier>ISSN: 0040-5809</identifier><identifier>EISSN: 1096-0325</identifier><identifier>DOI: 10.1016/j.tpb.2010.05.004</identifier><identifier>PMID: 20685218</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Birth ; Birth Rate ; Cannings model ; Coalescent process ; Genetics, Population ; Humans ; Lambda coalescent ; Models, Genetic ; Moran model ; Mutation ; Population Dynamics ; Selection, Genetic ; Stochastic Processes ; Survival Analysis ; Viability selection</subject><ispartof>Theoretical population biology, 2010-09, Vol.78 (2), p.77-92</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3</citedby><cites>FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20685218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Etheridge, Alison M.</creatorcontrib><creatorcontrib>Griffiths, Robert C.</creatorcontrib><creatorcontrib>Taylor, Jesse E.</creatorcontrib><title>A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit</title><title>Theoretical population biology</title><addtitle>Theor Popul Biol</addtitle><description>The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming–Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.</description><subject>Animals</subject><subject>Birth</subject><subject>Birth Rate</subject><subject>Cannings model</subject><subject>Coalescent process</subject><subject>Genetics, Population</subject><subject>Humans</subject><subject>Lambda coalescent</subject><subject>Models, Genetic</subject><subject>Moran model</subject><subject>Mutation</subject><subject>Population Dynamics</subject><subject>Selection, Genetic</subject><subject>Stochastic Processes</subject><subject>Survival Analysis</subject><subject>Viability selection</subject><issn>0040-5809</issn><issn>1096-0325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv2zAMhYWhxZJm-wG9DLr1MqeUFMkydgqCri2QYpftrMkSvSiQ7cxyWvTfV0Gyoqf1RJD4-EC-R8glgzkDpq6383FXzznkHuQcYPGBTBlUqgDB5RmZ5gkUUkM1IRcpbQFAMyE-kgkHpSVnekp-L6nrbcTksBup39tId0PvMCUaOmrpQz_Yjra9x0ifwrihf7ALjiaM6MbQd1-p7TwdN0ijbWtv36rF0IbxEzlvbEz4-VRn5Nf3m5-ru2L94_Z-tVwXTujFWLgSnYL8CRcNVKIEr4VqsFELDqJCzMUKB76RNbPCK1uVC11xVaOyJecoZuTqqJvP_7vHNJo25DNitB32-2Q0k1IIJfS75EFYgZJlJtmRdEOf0oCN2Q2htcOzYWAOCZityQmYQwIGpMl-550vJ_V93aJ_3fhneQa-HQHMbjwGHExyATuHPgzZU-P78B_5F_wYlVs</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Etheridge, Alison M.</creator><creator>Griffiths, Robert C.</creator><creator>Taylor, Jesse E.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SN</scope><scope>C1K</scope></search><sort><creationdate>201009</creationdate><title>A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit</title><author>Etheridge, Alison M. ; Griffiths, Robert C. ; Taylor, Jesse E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Birth</topic><topic>Birth Rate</topic><topic>Cannings model</topic><topic>Coalescent process</topic><topic>Genetics, Population</topic><topic>Humans</topic><topic>Lambda coalescent</topic><topic>Models, Genetic</topic><topic>Moran model</topic><topic>Mutation</topic><topic>Population Dynamics</topic><topic>Selection, Genetic</topic><topic>Stochastic Processes</topic><topic>Survival Analysis</topic><topic>Viability selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etheridge, Alison M.</creatorcontrib><creatorcontrib>Griffiths, Robert C.</creatorcontrib><creatorcontrib>Taylor, Jesse E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Theoretical population biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etheridge, Alison M.</au><au>Griffiths, Robert C.</au><au>Taylor, Jesse E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit</atitle><jtitle>Theoretical population biology</jtitle><addtitle>Theor Popul Biol</addtitle><date>2010-09</date><risdate>2010</risdate><volume>78</volume><issue>2</issue><spage>77</spage><epage>92</epage><pages>77-92</pages><issn>0040-5809</issn><eissn>1096-0325</eissn><abstract>The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming–Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20685218</pmid><doi>10.1016/j.tpb.2010.05.004</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5809 |
ispartof | Theoretical population biology, 2010-09, Vol.78 (2), p.77-92 |
issn | 0040-5809 1096-0325 |
language | eng |
recordid | cdi_proquest_miscellaneous_815533638 |
source | ScienceDirect Freedom Collection |
subjects | Animals Birth Birth Rate Cannings model Coalescent process Genetics, Population Humans Lambda coalescent Models, Genetic Moran model Mutation Population Dynamics Selection, Genetic Stochastic Processes Survival Analysis Viability selection |
title | A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20coalescent%20dual%20process%20in%20a%20Moran%20model%20with%20genic%20selection,%20and%20the%20lambda%20coalescent%20limit&rft.jtitle=Theoretical%20population%20biology&rft.au=Etheridge,%20Alison%20M.&rft.date=2010-09&rft.volume=78&rft.issue=2&rft.spage=77&rft.epage=92&rft.pages=77-92&rft.issn=0040-5809&rft.eissn=1096-0325&rft_id=info:doi/10.1016/j.tpb.2010.05.004&rft_dat=%3Cproquest_cross%3E815533638%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-c7ec6001023f09370d836fef642039ee420a3c0df5b1a3d6a9748926be6a722e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=748960657&rft_id=info:pmid/20685218&rfr_iscdi=true |