Loading…

Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis

Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that t...

Full description

Saved in:
Bibliographic Details
Published in:Applied magnetic resonance 2010, Vol.37 (1-4), p.483-495
Main Authors: Koptyug, Irina I., Lysova, Anna A., Kovalenko, Galina A., Perminova, Larisa V., Koptyug, Igor V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893
cites cdi_FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893
container_end_page 495
container_issue 1-4
container_start_page 483
container_title Applied magnetic resonance
container_volume 37
creator Koptyug, Irina I.
Lysova, Anna A.
Kovalenko, Galina A.
Perminova, Larisa V.
Koptyug, Igor V.
description Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the T 2 times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor. 13 C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance 13 C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction.
doi_str_mv 10.1007/s00723-009-0074-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_815534208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>815534208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAg6fVZLPZJMda1Baqgn_OIU0nJWW7WZPtod_e1BUEwcPMMPB7w5uH0CUlN5QQcZtyK1lBiMolqkIcoRGtKSsEJ-IYjYhiolCsEqfoLKUNIZRLKkZoPum6xlvT-9Di4PDz0yt-68D2MSQbuj027QrPt2bt2zX2LZ5BDzGsoYWwS_jOhyw1zT75dI5OnGkSXPzMMfp4uH-fzorFy-N8OlkUllWyLwThIEDUjhpY0RqEUzV1TlnmpM0751asKACTtoLSSMZLw8SSqaVVikvFxuh6uNvF8LmD1OutTxaaxnx70pJyzqqSyExe_SE3YRfbbE6XigpFWclIpuhA2fxyiuB0F_3WxL2mRB-y1UO2OmerD9lqkTXloEmZbdcQfy__L_oCJYV7ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917913230</pqid></control><display><type>article</type><title>Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis</title><source>Springer Nature</source><creator>Koptyug, Irina I. ; Lysova, Anna A. ; Kovalenko, Galina A. ; Perminova, Larisa V. ; Koptyug, Igor V.</creator><creatorcontrib>Koptyug, Irina I. ; Lysova, Anna A. ; Kovalenko, Galina A. ; Perminova, Larisa V. ; Koptyug, Igor V.</creatorcontrib><description>Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the T 2 times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor. 13 C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance 13 C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-009-0074-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aqueous solutions ; Atoms and Molecules in Strong Fields ; Biocatalysts ; Biofilms ; Enzymes ; Experiments ; Fructose ; Glucose ; Imaging techniques ; Isomerization ; Laser Matter Interaction ; Magnetic resonance imaging ; Microorganisms ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear reactors ; Organic Chemistry ; Overhauser effect ; Packed beds ; Physical Chemistry ; Physics ; Physics and Astronomy ; Signal to noise ratio ; Solid State Physics ; Spatial distribution ; Spectra ; Spectroscopy/Spectrometry ; Spectrum analysis ; Spin decoupling</subject><ispartof>Applied magnetic resonance, 2010, Vol.37 (1-4), p.483-495</ispartof><rights>Springer 2009</rights><rights>Springer 2009.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893</citedby><cites>FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Koptyug, Irina I.</creatorcontrib><creatorcontrib>Lysova, Anna A.</creatorcontrib><creatorcontrib>Kovalenko, Galina A.</creatorcontrib><creatorcontrib>Perminova, Larisa V.</creatorcontrib><creatorcontrib>Koptyug, Igor V.</creatorcontrib><title>Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the T 2 times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor. 13 C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance 13 C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction.</description><subject>Aqueous solutions</subject><subject>Atoms and Molecules in Strong Fields</subject><subject>Biocatalysts</subject><subject>Biofilms</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Fructose</subject><subject>Glucose</subject><subject>Imaging techniques</subject><subject>Isomerization</subject><subject>Laser Matter Interaction</subject><subject>Magnetic resonance imaging</subject><subject>Microorganisms</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear reactors</subject><subject>Organic Chemistry</subject><subject>Overhauser effect</subject><subject>Packed beds</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Signal to noise ratio</subject><subject>Solid State Physics</subject><subject>Spatial distribution</subject><subject>Spectra</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spectrum analysis</subject><subject>Spin decoupling</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAg6fVZLPZJMda1Baqgn_OIU0nJWW7WZPtod_e1BUEwcPMMPB7w5uH0CUlN5QQcZtyK1lBiMolqkIcoRGtKSsEJ-IYjYhiolCsEqfoLKUNIZRLKkZoPum6xlvT-9Di4PDz0yt-68D2MSQbuj027QrPt2bt2zX2LZ5BDzGsoYWwS_jOhyw1zT75dI5OnGkSXPzMMfp4uH-fzorFy-N8OlkUllWyLwThIEDUjhpY0RqEUzV1TlnmpM0751asKACTtoLSSMZLw8SSqaVVikvFxuh6uNvF8LmD1OutTxaaxnx70pJyzqqSyExe_SE3YRfbbE6XigpFWclIpuhA2fxyiuB0F_3WxL2mRB-y1UO2OmerD9lqkTXloEmZbdcQfy__L_oCJYV7ew</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Koptyug, Irina I.</creator><creator>Lysova, Anna A.</creator><creator>Kovalenko, Galina A.</creator><creator>Perminova, Larisa V.</creator><creator>Koptyug, Igor V.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>2010</creationdate><title>Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis</title><author>Koptyug, Irina I. ; Lysova, Anna A. ; Kovalenko, Galina A. ; Perminova, Larisa V. ; Koptyug, Igor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aqueous solutions</topic><topic>Atoms and Molecules in Strong Fields</topic><topic>Biocatalysts</topic><topic>Biofilms</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Fructose</topic><topic>Glucose</topic><topic>Imaging techniques</topic><topic>Isomerization</topic><topic>Laser Matter Interaction</topic><topic>Magnetic resonance imaging</topic><topic>Microorganisms</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear reactors</topic><topic>Organic Chemistry</topic><topic>Overhauser effect</topic><topic>Packed beds</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Signal to noise ratio</topic><topic>Solid State Physics</topic><topic>Spatial distribution</topic><topic>Spectra</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spectrum analysis</topic><topic>Spin decoupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koptyug, Irina I.</creatorcontrib><creatorcontrib>Lysova, Anna A.</creatorcontrib><creatorcontrib>Kovalenko, Galina A.</creatorcontrib><creatorcontrib>Perminova, Larisa V.</creatorcontrib><creatorcontrib>Koptyug, Igor V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koptyug, Irina I.</au><au>Lysova, Anna A.</au><au>Kovalenko, Galina A.</au><au>Perminova, Larisa V.</au><au>Koptyug, Igor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2010</date><risdate>2010</risdate><volume>37</volume><issue>1-4</issue><spage>483</spage><epage>495</epage><pages>483-495</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the T 2 times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor. 13 C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance 13 C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-009-0074-7</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0937-9347
ispartof Applied magnetic resonance, 2010, Vol.37 (1-4), p.483-495
issn 0937-9347
1613-7507
language eng
recordid cdi_proquest_miscellaneous_815534208
source Springer Nature
subjects Aqueous solutions
Atoms and Molecules in Strong Fields
Biocatalysts
Biofilms
Enzymes
Experiments
Fructose
Glucose
Imaging techniques
Isomerization
Laser Matter Interaction
Magnetic resonance imaging
Microorganisms
NMR
NMR spectroscopy
Nuclear magnetic resonance
Nuclear reactors
Organic Chemistry
Overhauser effect
Packed beds
Physical Chemistry
Physics
Physics and Astronomy
Signal to noise ratio
Solid State Physics
Spatial distribution
Spectra
Spectroscopy/Spectrometry
Spectrum analysis
Spin decoupling
title Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20NMR%20Spectroscopy%20and%20Imaging%20in%20Heterogeneous%20Biocatalysis&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Koptyug,%20Irina%20I.&rft.date=2010&rft.volume=37&rft.issue=1-4&rft.spage=483&rft.epage=495&rft.pages=483-495&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-009-0074-7&rft_dat=%3Cproquest_cross%3E815534208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917913230&rft_id=info:pmid/&rfr_iscdi=true