Loading…
Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis
Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that t...
Saved in:
Published in: | Applied magnetic resonance 2010, Vol.37 (1-4), p.483-495 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893 |
container_end_page | 495 |
container_issue | 1-4 |
container_start_page | 483 |
container_title | Applied magnetic resonance |
container_volume | 37 |
creator | Koptyug, Irina I. Lysova, Anna A. Kovalenko, Galina A. Perminova, Larisa V. Koptyug, Igor V. |
description | Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the
T
2
times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor.
13
C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance
13
C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction. |
doi_str_mv | 10.1007/s00723-009-0074-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_815534208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>815534208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAg6fVZLPZJMda1Baqgn_OIU0nJWW7WZPtod_e1BUEwcPMMPB7w5uH0CUlN5QQcZtyK1lBiMolqkIcoRGtKSsEJ-IYjYhiolCsEqfoLKUNIZRLKkZoPum6xlvT-9Di4PDz0yt-68D2MSQbuj027QrPt2bt2zX2LZ5BDzGsoYWwS_jOhyw1zT75dI5OnGkSXPzMMfp4uH-fzorFy-N8OlkUllWyLwThIEDUjhpY0RqEUzV1TlnmpM0751asKACTtoLSSMZLw8SSqaVVikvFxuh6uNvF8LmD1OutTxaaxnx70pJyzqqSyExe_SE3YRfbbE6XigpFWclIpuhA2fxyiuB0F_3WxL2mRB-y1UO2OmerD9lqkTXloEmZbdcQfy__L_oCJYV7ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2917913230</pqid></control><display><type>article</type><title>Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis</title><source>Springer Nature</source><creator>Koptyug, Irina I. ; Lysova, Anna A. ; Kovalenko, Galina A. ; Perminova, Larisa V. ; Koptyug, Igor V.</creator><creatorcontrib>Koptyug, Irina I. ; Lysova, Anna A. ; Kovalenko, Galina A. ; Perminova, Larisa V. ; Koptyug, Igor V.</creatorcontrib><description>Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the
T
2
times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor.
13
C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance
13
C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction.</description><identifier>ISSN: 0937-9347</identifier><identifier>EISSN: 1613-7507</identifier><identifier>DOI: 10.1007/s00723-009-0074-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aqueous solutions ; Atoms and Molecules in Strong Fields ; Biocatalysts ; Biofilms ; Enzymes ; Experiments ; Fructose ; Glucose ; Imaging techniques ; Isomerization ; Laser Matter Interaction ; Magnetic resonance imaging ; Microorganisms ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclear reactors ; Organic Chemistry ; Overhauser effect ; Packed beds ; Physical Chemistry ; Physics ; Physics and Astronomy ; Signal to noise ratio ; Solid State Physics ; Spatial distribution ; Spectra ; Spectroscopy/Spectrometry ; Spectrum analysis ; Spin decoupling</subject><ispartof>Applied magnetic resonance, 2010, Vol.37 (1-4), p.483-495</ispartof><rights>Springer 2009</rights><rights>Springer 2009.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893</citedby><cites>FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Koptyug, Irina I.</creatorcontrib><creatorcontrib>Lysova, Anna A.</creatorcontrib><creatorcontrib>Kovalenko, Galina A.</creatorcontrib><creatorcontrib>Perminova, Larisa V.</creatorcontrib><creatorcontrib>Koptyug, Igor V.</creatorcontrib><title>Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis</title><title>Applied magnetic resonance</title><addtitle>Appl Magn Reson</addtitle><description>Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the
T
2
times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor.
13
C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance
13
C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction.</description><subject>Aqueous solutions</subject><subject>Atoms and Molecules in Strong Fields</subject><subject>Biocatalysts</subject><subject>Biofilms</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Fructose</subject><subject>Glucose</subject><subject>Imaging techniques</subject><subject>Isomerization</subject><subject>Laser Matter Interaction</subject><subject>Magnetic resonance imaging</subject><subject>Microorganisms</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear reactors</subject><subject>Organic Chemistry</subject><subject>Overhauser effect</subject><subject>Packed beds</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Signal to noise ratio</subject><subject>Solid State Physics</subject><subject>Spatial distribution</subject><subject>Spectra</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spectrum analysis</subject><subject>Spin decoupling</subject><issn>0937-9347</issn><issn>1613-7507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAg6fVZLPZJMda1Baqgn_OIU0nJWW7WZPtod_e1BUEwcPMMPB7w5uH0CUlN5QQcZtyK1lBiMolqkIcoRGtKSsEJ-IYjYhiolCsEqfoLKUNIZRLKkZoPum6xlvT-9Di4PDz0yt-68D2MSQbuj027QrPt2bt2zX2LZ5BDzGsoYWwS_jOhyw1zT75dI5OnGkSXPzMMfp4uH-fzorFy-N8OlkUllWyLwThIEDUjhpY0RqEUzV1TlnmpM0751asKACTtoLSSMZLw8SSqaVVikvFxuh6uNvF8LmD1OutTxaaxnx70pJyzqqSyExe_SE3YRfbbE6XigpFWclIpuhA2fxyiuB0F_3WxL2mRB-y1UO2OmerD9lqkTXloEmZbdcQfy__L_oCJYV7ew</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Koptyug, Irina I.</creator><creator>Lysova, Anna A.</creator><creator>Kovalenko, Galina A.</creator><creator>Perminova, Larisa V.</creator><creator>Koptyug, Igor V.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>2010</creationdate><title>Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis</title><author>Koptyug, Irina I. ; Lysova, Anna A. ; Kovalenko, Galina A. ; Perminova, Larisa V. ; Koptyug, Igor V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aqueous solutions</topic><topic>Atoms and Molecules in Strong Fields</topic><topic>Biocatalysts</topic><topic>Biofilms</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Fructose</topic><topic>Glucose</topic><topic>Imaging techniques</topic><topic>Isomerization</topic><topic>Laser Matter Interaction</topic><topic>Magnetic resonance imaging</topic><topic>Microorganisms</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear reactors</topic><topic>Organic Chemistry</topic><topic>Overhauser effect</topic><topic>Packed beds</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Signal to noise ratio</topic><topic>Solid State Physics</topic><topic>Spatial distribution</topic><topic>Spectra</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spectrum analysis</topic><topic>Spin decoupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koptyug, Irina I.</creatorcontrib><creatorcontrib>Lysova, Anna A.</creatorcontrib><creatorcontrib>Kovalenko, Galina A.</creatorcontrib><creatorcontrib>Perminova, Larisa V.</creatorcontrib><creatorcontrib>Koptyug, Igor V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Applied magnetic resonance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koptyug, Irina I.</au><au>Lysova, Anna A.</au><au>Kovalenko, Galina A.</au><au>Perminova, Larisa V.</au><au>Koptyug, Igor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis</atitle><jtitle>Applied magnetic resonance</jtitle><stitle>Appl Magn Reson</stitle><date>2010</date><risdate>2010</risdate><volume>37</volume><issue>1-4</issue><spage>483</spage><epage>495</epage><pages>483-495</pages><issn>0937-9347</issn><eissn>1613-7507</eissn><abstract>Heterogeneously catalyzed enzymatic glucose isomerization was considered as a model process to extend the application of nuclear magnetic resonance (NMR) and magnetic resonance imaging techniques to the studies of biocatalytic processes and heterogeneous biocatalysts. It has been demonstrated that the
T
2
times of glucose are different for its aqueous solution in the pores of an unmodified porous support and in a heterogeneous biocatalyst, comprising bacterial cells immobilized on the same support. This observation has been used to map the spatial distribution of the active component within a packed bed of biocatalyst in a model reactor.
13
C NMR spectroscopy was applied to follow the progress of glucose isomerization catalyzed by the heterogeneous biocatalyst in a batch reactor. The utilization of proton spin decoupling and nuclear Overhauser effect was shown to be necessary to obtain high signal-to-noise ratio in the natural abundance
13
C NMR spectra of a glucose–fructose syrup present in the packed bed of biocatalyst. The spectra thus obtained were suitable for the quantification of the glucose-to-fructose ratio achieved in the biocatalytic reaction.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00723-009-0074-7</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0937-9347 |
ispartof | Applied magnetic resonance, 2010, Vol.37 (1-4), p.483-495 |
issn | 0937-9347 1613-7507 |
language | eng |
recordid | cdi_proquest_miscellaneous_815534208 |
source | Springer Nature |
subjects | Aqueous solutions Atoms and Molecules in Strong Fields Biocatalysts Biofilms Enzymes Experiments Fructose Glucose Imaging techniques Isomerization Laser Matter Interaction Magnetic resonance imaging Microorganisms NMR NMR spectroscopy Nuclear magnetic resonance Nuclear reactors Organic Chemistry Overhauser effect Packed beds Physical Chemistry Physics Physics and Astronomy Signal to noise ratio Solid State Physics Spatial distribution Spectra Spectroscopy/Spectrometry Spectrum analysis Spin decoupling |
title | Application of NMR Spectroscopy and Imaging in Heterogeneous Biocatalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20NMR%20Spectroscopy%20and%20Imaging%20in%20Heterogeneous%20Biocatalysis&rft.jtitle=Applied%20magnetic%20resonance&rft.au=Koptyug,%20Irina%20I.&rft.date=2010&rft.volume=37&rft.issue=1-4&rft.spage=483&rft.epage=495&rft.pages=483-495&rft.issn=0937-9347&rft.eissn=1613-7507&rft_id=info:doi/10.1007/s00723-009-0074-7&rft_dat=%3Cproquest_cross%3E815534208%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-705e7e76f1aed16e7f961ff9c3f8c16e55c7d1ee38c4e2a8352a37b39bc995893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2917913230&rft_id=info:pmid/&rfr_iscdi=true |