Loading…

Substrate specificity of Streptomyces transglutaminases

Transglutaminase (TGase) is a multifunctional enzyme vital for many physiologic processes, such as cell differentiation, tissue regeneration, and plant pathogenicity. The acyl transfer function of the enzyme can activate primary amines and, consequently, attach them onto a peptidyl glutamine, a reac...

Full description

Saved in:
Bibliographic Details
Published in:Applied biochemistry and biotechnology 2007-03, Vol.136 (3), p.291-308
Main Authors: Langston, J, Blinkovsky, A, Byun, T, Terribilini, M, Ransbarger, D, Xu, F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transglutaminase (TGase) is a multifunctional enzyme vital for many physiologic processes, such as cell differentiation, tissue regeneration, and plant pathogenicity. The acyl transfer function of the enzyme can activate primary amines and, consequently, attach them onto a peptidyl glutamine, a reaction important for various in vivo and in vitro protein crosslinking and modification processes. To understand better the structure-function relationship of the enzyme and to develop it further as an industrial biocatalyst, we studied TGase secreted by several Streptomyces species and Phytophthora cactorum. We purified the enzyme from S. lydicus, S. platensis, S. nigrescens, S. cinnamoneus, and S. hachijoensis. The pH and temperature profiles of S. lydicus, S. platensis, and S. nigrescens TGases were determined. The specificity of S. lydicus TGase toward its acyl-accepting amine substrates was characterized. Correlation of the electronic and steric features of the substrates with their reactivity supported the mechanism previously proposed for Streptomyces mobaraensis TGase.
ISSN:0273-2289
1559-0291
DOI:10.1007/s12010-007-9027-5